## GOVERNMENT POLYTECHNIC, AURANGABAD.

(An Autonomous Institute of Govt. of Maharashtra)



Curriculum for Diploma in Mechanical Engineering



Sixth Revision (2017-2018)

**Based on Outcome Based Education Philosophy** 

## Government Polytechnic, Aurangabad (An Autonomous Institute of Government of Maharashtra)





Sixth Revision Outcome Based Curriculum Document 2017-2018

Department of Mechanical Engineering

\_\_\_\_\_

## **CERTIFICATE OF PBOS**

This is to certify that the Curriculum of Diploma in Mechanical Engineering Programme has been revised to be implemented from academic year 2017-2018 The outcome based curriculum is hereby approved program wise board of studies.

> Shri Purushottam S. Maslekar Operation Head ENDURANCE TECHNOLOGIES LTD, MIDC Waluj Member (Board of Studies & Program Board of Studies)

Shri G. K. Chahal Industry Consultant, Aurangabad Program Board of Studies Member Shri Onkar S. Joshi Industry Consultant, Aurangabad Program Board of Studies Member

*Head Mechanical Engineering. Govt. Polytechnic Aurangabad*  In Charge Curriculum Development Cell Mechanical Department Govt. Polytechnic,Aurangabad **Principal** Govt. Polytechnic, Aurangabad

## **CERTIFICATE OF BOS**

This is to certify that the curriculum of Diploma in Mechanical Engineering Programme has been implemented with effect from academic year 2017-2018.

This Curriculum Document contains pages from 1 to ----

Department Coordinator Mechanical Engineering Department Government Polytechnic, Aurangabad Head of the Department Mechanical Engineering Government Polytechnic, Aurangabad

*I/C CDIC Government Polytechnic, Aurangabad*  Principal Government Polytechnic, Aurangabad

Chairman Board of Studies Government Polytechnic, Aurangabad

## CERTIFICATE OF EQUIVALENCE

This is to certify that the Curriculum of Diploma in Mechanical Engineering Programme of Govt. Polytechnic Aurangabad (An Autonomous Institute of Govt. of Maharashtra) ,which has been implemented with effect from 2017-18 academic year, is equivalent to Diploma in Mechanical Engineering Programme Implemented by Maharashtra State Board of Technical Education, therefore Equivalence is hereby granted as below.

| ARA NTALL RO |        | MAHARASHTRA STATE BOARD (<br>Bandra (East), Mumbai – 400 051. (ISO 9<br>EQUIVALENCE CERT | 001 : 2008) (ISO/IEC 27001 : 2013)                        |  |  |
|--------------|--------|------------------------------------------------------------------------------------------|-----------------------------------------------------------|--|--|
|              |        | This is to certify that, the following Diploma progr                                     | ammes run by GOVERNMENT POLYTECHNIC,                      |  |  |
| A            | URANG. | ABAD are Equivalent with Diploma Courses offer                                           | red by MAHARASHTRA STATE BOARD OF                         |  |  |
| T            | ECHNIC | CAL EDUCATION, MUMBAI at the state level.                                                |                                                           |  |  |
|              | Sr.No. | Name of the Full time Programme Offered by<br>Govt. Poly., Aurangabad                    | Name of the Equivalent Course of MSBTE                    |  |  |
|              | 1.     | DIPLOMA IN CIVIL ENGINEERING                                                             | DIPLOMA IN CIVIL ENGINEERING                              |  |  |
|              | 2.     | DIPLOMA IN MECHANICAL ENGINEERING                                                        | DIPLOMA IN MECHANICAL ENGINEERING                         |  |  |
|              | 3.     | DIPLOMA IN ELECTRICAL ENGINEERING                                                        | DIPLOMA IN ELECTRICAL ENGINEERING                         |  |  |
|              | 4.     | DIPLOMA IN ELECTRONICS & TELECOMMUNICATION<br>ENGINEERING                                | DIPLOMA IN ELECTRONICS &<br>TELECOMMUNICATION ENGINEERING |  |  |
|              | 5.     | DIPLOMA IN COMPUTER ENGINEEING                                                           | DIPLOMA IN COMPUTER ENGINEEING                            |  |  |
| A            | 6.     | DIPLOMA IN INFORMATION TECHNOLOGY                                                        | DIPLOMA IN INFORMATION TECHNOLOGY                         |  |  |
|              | 7.     | DIPLOMA IN AUTOMOBILE ENGINEERING                                                        | DIPLOMA IN AUTOMOBILE ENGINEERING                         |  |  |
| •            | 8 1    | DIPLOMA IN DRESS DESIGN& GARMENT<br>MANUFACTURING                                        | DIPLOMA IN DRESS DESIGN& GARMENT<br>MANUFACTURING         |  |  |
|              | T      | he Academic Equivalence granted to above programm                                        | es with the respective MSBTE courses is valid for         |  |  |
| the          |        | mic Year <b>2017-18 to 2019-20</b> .                                                     | HISTORIC HISTORY HISTORY                                  |  |  |

#### PREFACE

Government Polytechnic, Aurangabad, one of the oldest institute in Maharashtra was established in the year 1995-96. Over the period of time the institute, through its untiring efforts has created its own niche and has been functioning as a Lead Technical Institute in the State of Maharashtra to serve the Industry and Society by producing excellent technical manpower.

Government Polytechnic, Aurangabad has expanded quantitatively from an intake of 180 in 1995 with three programmes to 720 Intake in eight programmes. The Institute has been striving relentlessly for achievement of excellence in technical education. Government Polytechnic, Aurangabad has been functioning with 'the Autonomous Institute status', since 1994. It is presently functioning in three shifts, by running Diploma Programmes in I Shift (Regular), II shift and Part Time Diploma programmes in evening shift. I am proud to share that , the Institute has been ably rewarded with three state level awards for its best performance in the state of Maharashtra.

Institute has revised the curricula five times in the past and the sixth revision which was due, was initiated in the year 2015 and finally, the revised(sixth) curricula which is the outcome of, search conference under the guidance of NITTTR, Bhopal ,several workshops and deliberations, has been implemented with effect from 2017-18 with the approval of Programme wise Board of Studies (PBOS) Board of Studies (BOS) and consent of Governing Body.

The hallmark of sixth revision is, adopting 'Outcome Based Education Philosophy' as the basis for Curriculum Design and Development process. The 'Vision & Mission' of Institute and programme offering Departments, and with programme Educational Objectives (PEOs) ,Programme Outcomes as mandated by National Board of Accreditation (NBA) have been considered as points of reference for curriculum revision. Taking into account the need/ demand of industry and society, the courses such as 'Vocational Training (Industrial/In-plant Training), Seminar and Development of Life Skills for all the programmes have been introduced as compulsory. To accommodate these additional courses and other requirements, the credits of each programme have been enhanced from 184 to 194.

'Skill India', 'Digital India 'and ' Make in India' the flagship programmes/ initiatives of Government of India and State of Maharashtra have been the basic considerations in the curriculum revision process.

iv

I deem this is as an opportune moment to recall the following proverb/quote which I view as highly relevant ,on the occasion of writing the preface.

# "If you are planning for a year, sow rice; if you are planning for a decade, plant trees; if you are planning for a lifetime, educate people." – a Chinese proverb &

As the Indian Education Commission of 1964-66, also known as the *Kothari Commission*, it is stated that

#### "The destiny of our country is being shaped in our classrooms".

I take great pride in appreciating the efforts of Faculty of all Departments. All Faculty have taken determined efforts under the guidance of NITTTR Bhopal, Industry experts, academicians and Curriculum Development & Implementation Cell (CDIC) in the revision of curricula. I appreciate the contribution of alumni, students and faculty by making valuable suggestions / feedback for the revision of curricula.

I wish to assure, that the curriculum of all programmes will be implemented in true spirit to achieve the intended educational objectives of the programme.

(**Prof. F.A.Khan**) Principal Government Polytechnic, Aurangabad

## VISION AND MISSION STATEMENT OF INSTITUTE

## VISION

"To be the internationally accredited institute that contributes in the development of competent professionals & entrepreneurs on the platform of technology based systems, blended learning and training for highly qualified and trained staff".

## **MISSION**

"To educate and train the students for globally competent individuals, professionals, technicians and skilled human resources through world classcurriculum, student centric academic systems, team of committed, trained faculty and staff contributing to the student's, successful employment and entrepreneurship with a spirit of patriotism & concern for environment".

## VISION AND MISSION STATEMENT OF DEPARTMENT

## VISION

Center of excellence for employability and entrepreneurship through blended learning, incubator and collaborative practices.

## MISSION

- 1. Development of competent students for employability and entrepreneurship.
- 2. To encourage students to participate in technical competitions.
- 3. Exposure to the industrial practices.
- 4. To create a sense of social and environmental concern by inculcating humanitarian and ethical responsibilities.

#### SCOPE OF DIPLOMA IN MECHANICAL ENGINEERING

Mechanical, the versatile branch of engineering plays a cardinal role for multifaceted, rapid and sustainable socio-economic development of the nation covering each and every aspect of human life. It is concerned with the power generation, production, design and manufacturing, fabrication, automobile, refrigeration and air-conditioning, quality assurance, quality control etc. It is a bedrock upon which the survival and prosperity of whole industrial world rests.

We live in a world of constant change and globalization has changed the ways of organization functions. Customers occupy the focus of business and there is utmost need for an organization to become more creative with the ability to generate marketable products, practices and processes. Today prime motive of the industries is cost reduction, enhanced productivity, technology integration, automation and value addition. To be in tune with the industrial environment. The strong, innovative and well-qualified technical manpower is pre-requisite. They must be able to design and give solutions to the problems in the real world.

Tremendous progress has been made in the field of mechanical engineering such as innovation in design. Tools, equipments and materials with the help of state of art products and services.

This demands technicians of multiple skills and knowledge facets. The blend of mechanical with other branches as a wide professional practice has experienced the surge of growth and outcome of this is the transformation of industries to produce heavy duty sophisticated machine tools and equipments having higher precision and functionality. This made technicians and engineers from mechanical to adopt interdisciplinary and integrated approach. Such type of technicians and engineers is the demand of today's industrial world. Therefore the diploma in mechanical engineering envisages in developing competent technicians with a number of professional skills who can perform their jobs in the industries or as an entrepreneurs effectively and efficiently. In industries, in small businesses or in educational establishments, the mechanical technicians with necessary skills will be able to plan, maintain, design and manufacture, handle advanced machineries and equipments, deliver management functions and have a capacity to improve the existing system and develop new methods.

Mechanical engineering is a perennial flow of advanced technology stream and the most crucial component with great potential for adding value to the products and services for contributing to the national economy. Thus mechanical engineering has become an integral part of every aspect of human progress.

## AREA OF WORK/EMPLOYMENT:

| S. No. | Type of industries/     | Capacity (Designation) in which employed                   |  |  |
|--------|-------------------------|------------------------------------------------------------|--|--|
|        | organizations           |                                                            |  |  |
| 1      | Self owned industry     | Entrepreneur/proprietor/Design engineer/Production         |  |  |
|        |                         | executive/ Unit In charge/ Stores Officer                  |  |  |
| 2      | Private /Public Limited | Supervisor, Technician, Maintenance Engineer, Quality      |  |  |
|        | Companies               | control Engineer, Vendor development engineer, Store       |  |  |
|        |                         | manager, Planning engineer, Development engineer, Design   |  |  |
|        |                         | engineer, Marketing Executive, Testing and quality         |  |  |
|        |                         | assurance engineer, computer engineer, CAD Designer, Shift |  |  |
|        |                         | engineer                                                   |  |  |
| 3      | Banks, financial        | Sales executive, Product Development Executive, surveyor,  |  |  |
|        | corporation             | recovery executive, system in charge, project manager,     |  |  |
|        |                         | software development engineer, system maintenance          |  |  |
|        |                         | engineer                                                   |  |  |
| 4      | Indian Railways         | Loco Pilots, production engineers, Maintenance engineer,   |  |  |
|        |                         | Quality control engineer, supervisor, testing and QC       |  |  |
|        |                         | Manager                                                    |  |  |
| 5      | Indian army             | Junior Technical Officer (Short and Long term commissions) |  |  |
| 6      | Indian Air force        | Ground technicians, Ground engineers                       |  |  |
| 7      | Automobile Industries   | Production supervisor, Vehicle testing Engineer, Engine    |  |  |
|        |                         | testing engineer, Vehicle quality assurance executive, CAD |  |  |
|        |                         | CAM Engineer,                                              |  |  |
| 8      | Transport Department    | Assistant Motor Inspector (AMVI)                           |  |  |
| 9      | Indian Merchant Navy    | Junior Technical Officer (Mechanical)                      |  |  |
| 10     | Communication Sector    | Junior Telecom Officer (Mechanical), Marketing engineer    |  |  |
| 11     | Entrepreneur            | Proprietor                                                 |  |  |

## JOB FUNCTIONS

| Sr. no. | Designations of the        | Job functions                                           |
|---------|----------------------------|---------------------------------------------------------|
|         | diploma holders in various |                                                         |
|         | employment                 |                                                         |
| 1       | Entrepreneur               | Project Management                                      |
|         |                            | Plan, estimate, procure and install hardware and        |
|         |                            | software systems.                                       |
|         |                            | Analyze and design systems                              |
|         |                            | Administer and manage networks                          |
|         |                            | Marketing skills                                        |
| 2       | Supervisor/ Production     | Supervisor production                                   |
|         | Engineer/ Production       | Plan and execute production schedule                    |
|         | Manager                    | Arrange for material and tools supplied for             |
|         |                            | production                                              |
|         |                            | Supervise and guide workers for quality production      |
|         |                            | Train the workers for new production process/           |
|         |                            | operations                                              |
|         |                            | Ensure quality in production                            |
|         |                            | Handle labour problems                                  |
|         |                            | Ensure safety in production                             |
|         |                            | Maintenance of progress of production                   |
| 3       | Maintenance engineer       | Prepare schedule for preventive as well as routine      |
|         |                            | maintenance                                             |
|         |                            | Organize physical as well as human resources for        |
|         |                            | implementation of maintenance                           |
|         |                            | Execute maintenance work as per schedule                |
|         |                            | Obtain / make progress report of maintenance at         |
|         |                            | regular intervals and report to higher authorities      |
| 4       | Quality control /          | Applications of statistical methods to check quality of |
|         | inspection/ quality        | production                                              |

|   | assurance engineer        | Apply and monitor the quality systems like KAIZEN,    |
|---|---------------------------|-------------------------------------------------------|
|   |                           | CANBAN, ZERO DEFECT systems                           |
|   |                           | TQM on shop floor                                     |
|   |                           | Inspection of quality control from raw material       |
|   |                           | procurement to finished goods                         |
|   |                           | Monitor Just In Time Procurement method               |
|   |                           | Guidance to operators at intermediate stages of       |
|   |                           | production                                            |
|   |                           | To attain Total Quality Management                    |
|   |                           | Educate operators about global quality concept and    |
|   |                           | customer focused quality aspects                      |
| 5 | Sales /marketing engineer | Execute the marketing strategies of product           |
|   |                           | Interact with customers and sale the product          |
|   |                           | Plan and participate in marketing campaign of         |
|   |                           | product                                               |
|   |                           | Carry out market survey                               |
|   |                           | Plan for selling for achieving the targets of product |
| 6 | CAD./ CAM engineer/R      | Make the product/ part drawing in CAD software like   |
|   | &D engineer               | PRO-E, CATIA, SolidWorks and Auto CAD etc             |
|   |                           | Modeling of the parts and assemblies                  |
|   |                           | Make the CNC programmes from component parts,         |
|   |                           | CAD drawing and execute production cycles on the      |
|   |                           | machines                                              |
|   |                           | Interact with production and other departments for    |
|   |                           | feedback of design                                    |
| 7 | Loco Pilots               | Run the loco trains as per schedules                  |
|   |                           | Plan and make regular operational maintenance         |
|   |                           | Follow safety procedures during loco driving          |
| 8 | Junior Technical Officer  | Operate/ test the mechanical equipment in army like   |
|   | (Indian Army)             | engines of trucks jeeps. Tanks cannon, generator      |
|   |                           | Maintain the mechanical equipments of armed forces    |

|    |                          | Participate in war front and operate / maintain the mechanical equipment |  |  |
|----|--------------------------|--------------------------------------------------------------------------|--|--|
| 9  | Ground engineer /        | Operate and maintain mechanical equipment of air                         |  |  |
|    | Technician (Indian Air   | force like engines, turbines, cranes etc.                                |  |  |
|    | Force)                   | Regularly maintain the above mentioned equipment                         |  |  |
|    |                          | Participate in war front and maintain above                              |  |  |
|    |                          | equipment                                                                |  |  |
| 10 | Assistant Regional       | Control the transportation activities                                    |  |  |
|    | Transport Officer        | Act as license, Registration and vehicle passing                         |  |  |
|    | (ARTO)                   | authority                                                                |  |  |
|    |                          | Control the pollution by automobiles by regulating                       |  |  |
|    |                          | PUC norms                                                                |  |  |
| 11 | Junior telecom officer   | Erection/ maintenance of Telecom systems and                             |  |  |
|    |                          | Telephone exchange networks                                              |  |  |
| 12 | Junior Technical Officer | Operate/ maintains various boilers, turbine,                             |  |  |
|    | (Navy)                   | generators on ship                                                       |  |  |
|    |                          | Maintain missile systems onboard of ships                                |  |  |

#### SKILL IDENTIFICATION FOR MECHANICAL ENGINEERING

- Development of personality, communication and generic skills in the Mechanical Engineer.
- Acquiring working knowledge of engineering science.
- Acquiring working knowledge of engineering mechanics.
- To prepare and interpret product drawings as per IS code.
- To become familiar with basic workshop processes.
- To acquire working knowledge of various production process, metal forming and finishing process.
- To acquire working knowledge of Heat Power Engineering areas.
- To identify mechanisms and select the component for operation and maintenance of various machines.
- To identify and operate maintenance of various Electrical and Electronic devices.
- To identify and operate maintenance of various Electronics circuits and controls related to mechanical field.
- To select, install and operate hydraulically / pneumatically operated devices, circuits, devices and pumps.
- To acquire skills for automation applications.
- To use computer for mechanical engineering applications.
- To select appropriate materials and allied process for various mechanical components and applications.
- To become conversant with professional and commercial practice.
- To become conversant with basics of measurements and instrumentations.
- To understand fundamentals of various thermodynamics system with a view of their effective operation and maintenance in practice.
- To understand mechanisms used in practical machines and equipments with view of operation and maintenance of machines.
- To get acquainted with metallurgy and manufacturing process and materials with a view to operate them effectively in practical situation.

- To understand basics and fundamentals of industrial engineering and world class manufacturing practices so as to apply them in practice.
- To develop logical approach for problem solving in mechanical engineering areas using programming language i.e. Visual basic, etc.
- To understand fundamental concepts of basics of CNC machines and develop the skills of part programming.
- To understand and get proficiency in handling the measuring instruments in the practical situations.
- To operate and maintain the automobiles by understanding the basic and principles.
- To understand the latest developments in software and Automation.
- To develop Entrepreneurial skills.
- To create environmental conscious.
- To design press tools, forging dies, moulds, etc.
- To interpret using with easy drawing.
- To be able to plan the process for manufacturing a component as per part drawing.
- To acquire the skills in 2D & 3D modeling using different software.

### **CURRICULUM DESIGN & DEVELOPMENT**

- Different courses are categorized as.
  - Foundation Level
  - ► Basic Level.
  - > Allied Level.
  - > Applied Level.
  - > Diversified Level.
- Curriculum scheme of each course along with course code is given at the beginning.
- Competencies to be developed are identified and written.
- Rationale of each course is highlighted.
- Objective of each course is highlighted and written.
- Content outline is in descriptive form. Generally the content outline of a subject was divided into chapters and then from chapters into topic outline.
- Having derived the total content outlines i.e. Theory. At the end of the theory content list of practicals is added for each course.
- Time required by a teacher to teach the prescribed theory and practical parts is mentioned.
- Number of courses per term to be taken is specified.
- Total no. of hours required to teach the entire course is mentioned.
- Total no. of lectures and practical per week is specified.
- Approach to the assessment of student's learning and types of assessment techniques to be used were decided. An assessment scheme was designed which is suitable mix of (a) continuous evaluation of term-work (b) progressive test (c) Term end examination.
- Implementation strategies for each subject were identified.
- Learning resources for students were prescribed such as ......
  - ✤ Teacher's lecture notes.
  - Basic text-book covering most of the topics in the curriculum and other books.

- Monographs, handbooks, periodicals, articles, journals etc.
- ✤ Data-books, manuals, standards etc.
- Various websites (internet)

In all these activities, views of senior teachers regarding relevance of course contents and implementation strategies being presently followed are sought.

An Approach to Curriculum Design and Development Based upon Outcome Based Education (OBE) Philosophy as adopted for Sixth Revision of Curriculum of Government Polytechnic Aurangabad.

#### Introduction:

After conferring academic autonomy to Government Polytechnics during Second Technician World Bank Assisted Project (Tech Ed II) implemented from 1992 to 1999 the curriculum revision process is being carried out after every 4-5 years. Our Institute, being Academically Autonomous since 1994, has been following the same practice and hence this sixth revision of curriculum for all programmes.

Curriculum, as per Colombo Plan Staff College Manila (1984), means 'an educational programme designed, developed and implemented to attain predetermined educational objectives.' Therefore curriculum ought to be designed for achieving purpose, objectives, outcomes that are decided well in advance. More over curriculum at any level, let it be at unit, at course, at course category or at programme level at the top, comprises of (Ralph Tylor 1949) rationale, objectives/ outcomes, content, Learning -Teaching strategies (LTS) and finally student's assessment and evaluation.

We are in the era where technical manpower in general and engineering technicians in particular are required to solve or assist in solving engineering problems from nano – micro level to mega level (Jeff Lohmann 2009). It is expected from him/ her in that case to use knowledge of not only technology but also natural sciences (animate, inanimate and psycho socio sciences) and mathematics. Moreover he/ she is required to use advance IT based tools and techniques in diagnosing faults and carry out maintenance. Further technical manpower should have ability to work in team, communicate effectively, and remain updated of technologies they are expected to deal with.

As per research on curriculum in engineering and technology, education carried out in different parts of world it is concluded that philosophy, framework, approach and model that is to be used for developing technical manpower with such profile should be Interdisciplinary – integrated curriculum.

Therefore the philosophy of curriculum development used in revising sixth curriculum has been Integrated – interdisciplinary in nature to achieve outcome based technical education .

Even though all prevailing & necessary apt theories of curriculum design are used in the curriculum development process the existing curriculum has been questioned for its ability to provide clearly stated learning outcomes and therefore it is right time that the revised curricula requires that it should give enough clarity as regards intended learning outcomes to all concerned – first to the student, then to the teachers and the industry, followed by all the other stakeholders. This meant that the curriculum should explicitly state as to what are the observable and measurable 'competencies' expected by the industry. Such 'competencies' comprising of measurable 'Course outcomes' in the 'cognitive domain', measurable associated practical outcomes in the form of practical exercises in the 'psychomotor domain' and measurable social skills related to the 'affective domain' will help the students and teachers in knowing the 'length, breadth and depth' of the course necessary to achieve the competency.

Therefore Curriculum need to be outcome-based where competencies / program outcomes and course outcomes are measurable.

We are in the era of accords viz. Washington, Sidney, Dublin Accords in which gradation of any engineering and technology programme is carried out using outcome based criteria in signatory countries. It was the outcome based criteria, which was devised for the first time by Accreditation Board for Engineering and Technology (ABET), that is being followed in USA for grading programmes for their quality since 1998. It is the industry which made educational institutes to go for outcome based criteria popularly known as EC 2000 where main emphasis is over outcomes – what he/ she knows and what he/ she is able to do.

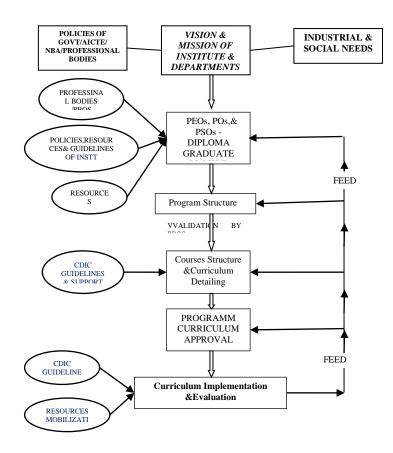
National Board of Accreditation (NBA) has been practicing outcome based criteria in grading educational programmes of institutes awarding diploma and degree in engineering and technology. In that case the board empowered to undertake exercise of accrediting programmes has developed indigenous criteria for diploma programmes as follows: -

i. Vision, mission and programme educational objectives

- ii. Programme outcomes
- iii. Programme curriculum
- iv. Students performance
- v. Faculty
- vi. Facilities and technical support
- vii. Academic support unit and teaching learning process
- viii. Governance
- ix. Institutional support and finance resources
- x. Continuous improvement

As All India Council for Technical Education (AICTE) has made it mandatory to institutions to follow curricular processes for extending Outcome Based Technical Education and get programme accreditated from NBA.

# Philosophy for Sixth Revision of Curriculum adopted at Government Polytechnic Aurangabad :


Sixth revision of Curriculum uses model, approach, philosophy evolved over the years in other part of the world and accepted by our nation through National Board of Accreditation (NBA). being signatory of Washington Accord. It is the curriculum development philosophy that will enable institutes to impart Outcome based education (OBE). It is essential in that case to design a programme curriculum, develop resources for implementing it, implement it and undertake student's assessment and evaluation to impart OBE.

As regards, sixth revision of curriculum, which is based primarily on Outcome Based Education philosophy, follows the following stages.

- 1. Occupation analysis.
- 2. Formulation of Vision & Mission of Institute/Department.
- 3. Formulation of Diploma graduate attributes and Programme Educational Objectives.
- 4. Evolve Program Structure.
- 5. Evolve Course structure, Course Competencies, Course Outcomes & Curriculum detailing of each course.
- 6. Approval of Curriculum
- 7. Implementation of Curriculum.

### Approach to Curriculum Design and Development for Sixth Revision of Curriculum based upon above stages has been elaborated and depicted schematically as below.

In line with above stages, the institute ,under the guidance of NITTTR Bhopal organized the search conference/workshop involving industry personnel from several industries in the region covering all sectors related to 8 programmes run in the institute .



#### CURRICULUM DEVELOPMENT APPROACH

This led to occupation analysis, knowing industry and society expectations as regards diploma graduate / engineer to arrive at profile of diploma engineers.

Institute also carried meetings and deliberations with stake holders to formulate the renewed Vision & Mission of Institute and departments as well. The Vision & Mission so formulated have been considered as the terms of references in curriculum revision process.

**Programme Educational Objectives (PEOs)** – Programme educational objectives which are broad statements that describe the career and professional accomplishments that the programme is preparing graduates to achieve are formulated.

**Programme Outcomes (POs)** - As Mandated by NBA, following Programme Outcomes have been also the basis for curriculum revision. These Programme outcomes state the attainment of students' abilities, which the Department has to ensure that the stated outcomes are achieved before they are allowed to graduate.

1. Basic knowledge: An ability to apply knowledge of basic mathematics, science and engineering to solve the engineering problems.

2. Discipline knowledge: An ability to apply discipline - specific knowledge to solve core and/or applied engineering problems.

3. Experiments and practice: An ability to plan and perform experiments and practices and to use the results to solve engineering problems.

4. Engineering Tools: Apply appropriate technologies and tools with an understanding of the limitations.

5. The engineer and society: Demonstrate knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to engineering practice.

6. Environment and sustainability: Understand the impact of the engineering solutions in societal and environmental contexts, and demonstrate the knowledge and need for sustainable development.

7. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

8. Individual and team work: Function effectively as an individual, and as a member or leader in diverse/multidisciplinary teams.

9. Communication: An ability to communicate effectively.

10. Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the context of technological changes.

In the next stage following steps have been followed

xi. Identification & validation of Programme Structure

xii. Validation of programme structure

xiii. Detailing of course curricula

xiv. Vetting of programme curriculum

xv. Implementation and student's evaluation

XX

Under the guidance of Programme wise Board of Studies (PBOS), Course areas, levels, programme structure are worked and validated. In line with this structure, course structure, Teaching & Examination schemes are formulated. For each course, course rationale, course competency, course outcomes, content detailing, specification table, practical experiences along with instructional strategies/methods & student activities are also identified and validated by the PBOS.

Curricula of respective programme are presented before Board of Studies (BOS) for the final approval before it is implemented.

Implementation of curriculum involves, orienting faculty & staff for implementation, development lab manuals, learning resources, model question papers and training faculty for expertise in course areas (if required).

Mapping – Mapping is the process of representing, preferably in matrix form, the correlation among the parameters. It may be done for one to many, many to one, and many to many parameters. In curriculum development process COs are mapped with POs & PSOs to establish the correlation between COs & POs/PSOs.

#### Salient Features of Curriculum:

Curriculum of each programme comprises of 40 -45 courses with 194 credits at five levels viz. foundation courses, basic technology courses, allied courses, applied technology courses and diversified technology courses to be taught over three years of any diploma programme offered. It is outcomes at five tiers viz. International & Professional (after 3—5 years of graduation) registration, programme outcomes, course outcomes and major learning outcome of each unit are used to establish not only intra course and inter courses integration but also the programme outcome is getting linked to international and professional registration of diploma graduates.

The levels as stated above are defined as follows:

- xvi. Foundation This course level contains courses that remains foundation to learn not only basic technology but also technology courses of advance and diversified levels. Natural sciences and Mathematics (NS&M) are the subject areas from which these courses are designed.
- xvii. Basic Technology This level represents set of courses that are derived from foundation courses. These courses link foundation courses with applied and diversified technology courses.

- xviii. Allied The courses related to Humanities and Social Sciences (H&SS) are a part of this level. They play a role of developing anD human and social dimensions of personality of engineers.
- xix. Applied technology This level contains courses related to title of the programme viz. Civil engineering, Mechanical engineering etc. Every programme represents a sector of an economy and it prepares manpower that deals with design, production, and maintenance of entities related to the programme i.e. Civil engineering deals with building, roads, and automobile engineering related to motor vehicles as the entities
- xx. Diversified technology This is fifth level of curriculum in which types of courses are from diversified technology are included. This level exposes students to latest development in the field of study.

#### **PROGRAMME OUTCOMES (PO)**

- PO1. **Basic knowledge (Building foundation)** : Apply knowledge of basic mathematics, science and engineering to solve the Mechanical Engineering related problems.
- PO2. Discipline knowledge (Disc. Specific knowledge): Apply discipline specific knowledge to solve core and/or applied problems.
- PO3. Experiments and practice (Hands on experience): Plan to perform experiments and practices and to use the results to solve problems.
- PO4. Engineering tools (Tools and Technology): Apply appropriate technologies and tools with an understanding of the limitations
- PO5. The engineer and society (societal needs): Assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to practice in field of Mechanical Engineering.
- PO6. Environment and sustainability (Sustainability and env. Concern): Apply engineering solutions for sustainable development practices in societal and environmental contexts.
- PO7. Ethics (Morale and ethics) : Apply ethical principles for commitment to professional ethics, responsibilities and norms of the practice in field of Mechanical Engineering.
- PO8. Individual and team work (Team building) : Function effectively as a leader and team member in diverse/ multidisciplinary teams.
- PO9. Communication: Communicate effectively in oral and written form.
- PO10. Life-long learning (Continuing education): Engage in independent and life-long learning in the context of technological changes.

#### **PROGRAMME EDUCATIONAL OBJECTIVES(PEOS)**

**PEO 1:** Provide students with the fundamental technical knowledge and skills in science, and engineering, and to apply these abilities to implement solutions in practice.

**PEO 2:** Provide students with necessary instructional and practical experience to work effectively in local and international environments and to become effective communicators.

**PEO 3:** To provide an academic environment that gives adequate opportunity to the students to cultivate lifelong skills needed for a successful professional career.

**PEO 4:** To inculcate professional and ethical attitude, team work, multidisciplinary approach, entrepreneurial thinking and an ability to relate Mechanical Engineering issues with social issues.

#### **PROGRAMME SPECIFIC OUTCOMES (PSO)**

- **PSO1.** Modern Software Usage: Use latest software and innovations in the area of Mechanical Engineering.
- PSO2.**Manage Manufacturing Process:** Manage the Manufacturing process by selection and scheduling right type of machinery, equipment, substrates and Softwares for a particular job for economy of operations.

# MAPPING OF MISSION AND PROGRAMME EDUCATIONAL OBJECTIVES

| PEO Statements                                                                | M1 | M2 | M3 | M4 |
|-------------------------------------------------------------------------------|----|----|----|----|
| PEO1: Provide students with the fundamental technical knowledge and           |    |    |    |    |
| skills in science, and engineering, and to apply these abilities to implement | 3  | 1  | 2  | 1  |
| solutions in practice                                                         |    |    |    |    |
| PEO 2: Provide students with the necessary instructional and practical        |    |    |    |    |
| experience to work effectively in local and international environments and    | 2  | 2  | 3  | 1  |
| to become effective communicators, mentor.                                    |    |    |    |    |
| PEO 3: To provide an academic environment that gives adequate                 |    |    |    |    |
| opportunity to the students to cultivate lifelong skills needed for a         | 2  | 3  | 1  | -  |
| successful professional career.                                               |    |    |    |    |
| PEO 4: To inculcate professional and ethical attitude, team work,             |    |    |    |    |
| multidisciplinary approach, entrepreneurial thinking and an ability to relate | 1  | 1  | _  | 3  |
| Mechanical Engineering issues with social issues.                             |    |    |    |    |
|                                                                               |    |    |    |    |

MISSION

M1: Development of competent students for employability and entrepreneurship.

M2: To encourage students to participate in technical competitions.

M3: Exposure to the industrial practices.

M4: To create a sense of social and environmental concern by inculcating humanitarian and ethical responsibilities.

# MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES AND PROGRAMME OUTCOMES

| Sr. | Programme Educational Objectives (PEOs)                                                                     | Programme Outcomes  |
|-----|-------------------------------------------------------------------------------------------------------------|---------------------|
| No. |                                                                                                             | (POs)               |
| 1   | <b>PEO 1:</b> Provide students with the fundamental technical knowledge                                     | PO1,PO2,PO3,PO4,    |
|     | and skills in science, and engineering, and to apply these abilities to<br>implement solutions in practice. | PO10                |
| 2   | <b>PEO 2:</b> Provide students with the necessary instructional and                                         | PO4,PO6,PO9,PO10    |
|     | practical experience to work effectively in local and international                                         |                     |
|     | environments and to become effective communicators, mentor.                                                 |                     |
| 3   | <b>PEO 3:</b> To provide an academic environment that gives adequate                                        | PO1,PO2,PO3,PO4,PO8 |
|     | opportunity to the students to cultivate lifelong skills needed for a successful professional career.       | ,PO10,              |
| 4   | <b>PEO 4:</b> To inculcate professional and ethical attitude, team work,                                    | PO5,PO6,PO7,PO8     |
|     | multidisciplinary approach, entrepreneurial thinking and an ability to                                      |                     |
|     | relate Mechanical Engineering issues with social issues.                                                    |                     |

| SR | PROGRAMME OUTCOMES                    | COURSES                                                                                   |  |  |
|----|---------------------------------------|-------------------------------------------------------------------------------------------|--|--|
| NO |                                       |                                                                                           |  |  |
|    | PO1. Basic knowledge (Building        | Basic Math, Engg. Chemistry, Refrigeration                                                |  |  |
|    | foundation): Apply knowledge of basic | &Air                                                                                      |  |  |
|    | mathematics, science and engineering  | conditioning,ToolEngg,Thermal,Engg,Engg.Gr                                                |  |  |
|    | to solve the Mechanical Engineering   | aphics,WorkshopPractics,Basic of computers,                                               |  |  |
|    | related problems.                     | English, Computer aided drafting, Computer                                                |  |  |
|    |                                       | integrated machining, Industrial Fludics,                                                 |  |  |
|    |                                       | Measurement & Control, Mechanical Engg                                                    |  |  |
|    |                                       | drawing, Automobile Engg, Advance                                                         |  |  |
|    |                                       | manufacturing process, Heat power Engg,                                                   |  |  |
|    |                                       | Environmental science, Engg. Math, Engg.                                                  |  |  |
|    |                                       | physics,Communicationskills,Engg.Mechanics,                                               |  |  |
|    |                                       | EnggDrawing,MechnicalTechnology,Developm                                                  |  |  |
|    |                                       | ent of life skills, Enterpreneurship                                                      |  |  |
|    |                                       | Development, Fluidpower, Mechanical Engg                                                  |  |  |
|    |                                       | materials, Maching processes, Theory of                                                   |  |  |
|    |                                       | machines, Strength of Materials, Basic                                                    |  |  |
|    |                                       | Electrical & Electronics.                                                                 |  |  |
|    | PO2. Discipline knowledge (Disc.      | Basic Math, Engg. Chemistry, Refrigeration &                                              |  |  |
|    | Specific knowledge): Apply discipline |                                                                                           |  |  |
|    | - specific knowledge to solve core    | Engg. Graphics, Workshop Practices, Basic of                                              |  |  |
|    | and/or applied problems.              | computers, English, Computer aided drafting,<br>Computer integrated machining, Industrial |  |  |
|    |                                       | Fludics, Measurement & Control, Mechanical                                                |  |  |
|    |                                       | Engg drawing, Automobile Engg, Advance                                                    |  |  |
|    |                                       | manufacturing process, Heat power Engg,                                                   |  |  |
|    |                                       | Environmental science, Engg Math, Engg                                                    |  |  |
|    |                                       | physics, Communication skills, Engg.                                                      |  |  |
|    |                                       | Mechanics, Engg. Drawing, Mechanical                                                      |  |  |
|    |                                       | Technology, Development of life skills,                                                   |  |  |

## MAPPING OF PROGRAMME OUTCOME AND COURSES

|                                        | Entrepreneurship Development, Fluidpower,     |
|----------------------------------------|-----------------------------------------------|
|                                        | Mechanical Engg materials, Machining          |
|                                        | processes, Theory of machines, Strength of    |
|                                        | Materials, Basic Electrical & Electronics,    |
|                                        | Seminar.                                      |
| PO3. Experiments and practice          | Basic Math, Engg. Chemistry, Refrigeration &  |
| (Hands on experience): Plan to perform | Air-conditioning, Tool, Engg, Thermal, Engg,  |
| experiments and practices and to use   | Engg. Graphics, Workshop Practics, Basic of   |
| the results to solve problems.         | computers, English, Computer aided drafting,  |
|                                        | Computer integrated machining, Industrial     |
|                                        | Fludics, Measurement & Control, Mechanical    |
|                                        | Engg drawing, Automobile Engg, Advance        |
|                                        | manufacturing process, Heat power Engg,       |
|                                        | Environmental science, Engg Math, Engg        |
|                                        | physics, Communication skills, Engg.          |
|                                        | Mechanics, Engg Drawing, Mechanical           |
|                                        | Technology, Development of life skills, Fluid |
|                                        | power, Mechanical Engg materials, Machining   |
|                                        | processes, Theory of machines, Strength of    |
|                                        | Materials, Basic Electrical &Electronics,     |
|                                        | Seminar.                                      |
| PO4. Engineering tools (Tools and      | Engg. Chemistry, Refrigeration & Air-         |
| Technology): Apply appropriate         | conditioning, Tool, Engg, Thermal, Engg,      |
| technologies and tools with an         | Engg. Graphics, Workshop Practices, Basic of  |
| understanding of the limitations       | computers, English , Computer integrated      |
|                                        | machining, Industrial Fludics, Measurement &  |
|                                        | Power plant Engg. Control, Mechanical Engg    |
|                                        | drawing, Automobile Engg, Advance             |
|                                        | manufacturing process, Heat power Engg Engg   |
|                                        | Math, Engg physics, Communication skills,     |
|                                        | Engg. Mechanics, Engg Drawing, Mechanical     |
|                                        | Technology, Development of life skills,       |
|                                        | Entrepreneurship Development, Fluid power,    |

|                                           | Mechanical Engg materials Industrial Mgt.       |
|-------------------------------------------|-------------------------------------------------|
|                                           | Maching processes, Theory of machines, Basic    |
|                                           | Electrical & Electronics, Seminar.              |
| PO5. The engineer and society             | Engg. Chemistry, Refrigeration & Air            |
| (societal needs): Assess societal,        | conditioning, power plant engg. Computer        |
| health, safety, legal and cultural issues | aided drafting, Thermal, Engg, ,Workshop        |
| and the consequent responsibilities       | Practices, ,English, Mechanical Engg drawing,   |
| relevant to practice in field of          | Automobile Engg, Advance manufacturing          |
| Mechanical Engineering.                   | process, Engg Math, Communication skills,       |
|                                           | Development of life skills, Fluid power,        |
|                                           | Industrial Mgt.                                 |
| PO6. Environment and sustainability       | Engg. Chemistry, Refrigeration & Air-           |
| (Sustainability and env. Concern):        | conditioning, Tool Engg, Thermal, Engg,         |
| Apply engineering solutions for           | English, Computer aided drafting, Industrial    |
| sustainable development practices in      | Fludics Automobile Engg, Advance                |
| societal and environmental contexts.      | manufacturing process, Heat power Engg,         |
|                                           | Environmental science, Engg physics,            |
|                                           | Communication skills, Mechanical Engg           |
|                                           | materials, Maching processes, Theory of         |
|                                           | machines.                                       |
| PO7. Ethics (Morale and ethics):          | Refrigeration &Air conditioning, Thermal,       |
| Apply ethical principles for              | Engg , English, workshop practices,             |
| commitment to professional ethics,        | communication, Computer integrated              |
| responsibilities and norms of the         | machining, skills, Development of life skills,  |
| practice in field of Mechanical           | entrepreneurship development, Computer aided    |
| Engineering.                              | drafting, Automobile Engg, Advance              |
|                                           | manufacturing process, Heat power Engg, Engg    |
|                                           | physics, Basic Electrical & Electronics, Theory |
|                                           | of machines. Mechanical Engg drawing. Power     |
|                                           | plant engg.                                     |
| PO8. Individual and team work             | Refrigeration &Air conditioning, Thermal,       |
| (Team building) : Function effectively    | Engg, Workshop Practices, English, Computer     |
| as a leader and team member in            | aided drafting, Computer integrated machining,  |

| diverse/ multidisciplinary teams.     | Industrial Fludics Mechanical Engg drawing,    |
|---------------------------------------|------------------------------------------------|
|                                       | Automobile Engg, Advance manufacturing         |
|                                       | process, Heat power Engg, Communication        |
|                                       | skills, Engg Drawing, Mechanical Technology,   |
|                                       | Development of life skills, Fluidpower, Basic  |
|                                       | Electrical & Electronics, Seminar.             |
| PO9. Communication: Communicate       | Refrigeration & Air conditioning, Thermal,     |
| effectively in oral and written form. | Engg, Engg. Graphics, Workshop Practices,      |
|                                       | English, Computer aided drafting, Computer     |
|                                       | integrated machining, Industrial Fludics,      |
|                                       | Mechanical Engg drawing, Automobile Engg,      |
|                                       | Advance manufacturing process, Heat power      |
|                                       | Engg, Environmental science, Communication     |
|                                       | skills , Engg Drawing, Development of life     |
|                                       | skills, Theory of machines, Basic Electrical & |
|                                       | Electronics.                                   |
| PO10. Life-long learning (Continuing  | Refrigeration & Air conditioning, Tool, Engg,  |
| education): Engage in independent and | Thermal, Engg, Engg. Graphics, Workshop        |
| life-long learning in the context of  | Practices, Basic of computers, English,        |
| technological changes.                | Computer aided drafting, Computer integrated   |
|                                       | machining, Industrial Fludics, Mechanical Engg |
|                                       | drawing, Automobile Engg, Advance              |
|                                       | manufacturing process, Heat power Engg, Engg   |
|                                       | Math, Engg physics, Communication skills ,     |
|                                       | Development of life skills, Mechanical Engg    |
|                                       | materials, Basic Electrical & Electronics      |

| SR.<br>NO | LEVELS      | COMPULSORY<br>COURCES | OPTIONAL<br>COURSES | CREDITS<br>COMP. +<br>OPTIONAL | MARKING SCHEME        |                     |       |
|-----------|-------------|-----------------------|---------------------|--------------------------------|-----------------------|---------------------|-------|
|           |             |                       |                     |                                | COMPULSORY<br>COURSES | OPTIONAL<br>COURSES | TOTAL |
| 1         | Foundation  | 4                     |                     | 18                             | 500                   |                     | 500   |
| 2         | Basic       | 13                    |                     | 63                             | 1575                  | -                   | 1575  |
| 3         | Allied      | 6                     | 02/15               | 24                             | 475                   |                     | 475   |
| 4         | Applied     | 10                    | 01/3                | 57                             | 1300                  | 150                 | 1450  |
| 5         | Diversified | 6                     | 01/3                | 32                             | 750                   | 150                 | 900   |
|           | TOTAL       | 39                    | 4                   | 194                            | 4600                  | 300                 | 4900  |

## PROGRAMME STRUCTURE AT A GLANCE

#### Scheme at a glance:

| Total number of courses offered | : 60 |
|---------------------------------|------|
| Number of Compulsory courses    | : 39 |
| Number of Optional course       | : 25 |
|                                 |      |

Total courses to be applied : 43

### **LEVELWISE COURSE STRUCTURE** Level 1: Foundation Level Courses:

|     | FOUNDATION LEVEL |                   |                 |    |    |    |    |                    |     |     |    |       |     |  |  |
|-----|------------------|-------------------|-----------------|----|----|----|----|--------------------|-----|-----|----|-------|-----|--|--|
| Sr. | Course           | Course Name       | Teaching Scheme |    |    |    |    | Examination Scheme |     |     |    |       |     |  |  |
| No. | Code             |                   | Th Pr Tu Cr Ter |    |    |    | PT | Th                 | Pr  | Tw  | Or | Total |     |  |  |
|     |                  |                   |                 |    |    |    | m  |                    |     |     |    |       |     |  |  |
| 1   | 6G101            | Basic Mathematics | 3               |    | 1  | 4  | Ι  | 20                 | 80  |     |    |       | 100 |  |  |
|     |                  | (BMT)             |                 |    |    |    |    |                    |     |     |    |       |     |  |  |
| 2   | 6G102            | Engineering       | 3               |    | 1  | 4  | II | 20                 | 80  |     |    |       | 100 |  |  |
|     |                  | Mathematics       |                 |    |    |    |    |                    |     |     |    |       |     |  |  |
|     |                  | (EMT)             |                 |    |    |    |    |                    |     |     |    |       |     |  |  |
| 3   | 6G103            | Engineering       | 3               | 2  |    | 5  | II | 20~                | 80~ | 25@ | 25 |       | 150 |  |  |
|     |                  | Physics (EPH)     |                 |    |    |    |    |                    |     |     |    |       |     |  |  |
| 4   | 6G104            | Engineering       | 3               | 2  |    | 5  | Ι  | 20~                | 80~ | 25@ | 25 |       | 150 |  |  |
|     |                  | Chemistry (ECH)   |                 |    |    |    |    |                    |     |     |    |       |     |  |  |
|     |                  |                   | 12              | 04 | 02 | 18 |    | 80                 | 320 | 50  | 50 |       | 500 |  |  |

#### Scheme at Glance:

| Total number of courses offered | : 04  |
|---------------------------------|-------|
| Number of Compulsory Courses    | : 04  |
| Number of Optional Courses      | : Nil |
| Total Courses                   | :04   |
| Total Credits                   | : 18  |
| Total Marks                     | : 500 |

Tu = Tutorial

G-COURSES COMMON TO ALL BRANCHES R-COURSES COMMON TO MECHANICAL AND AUTOMOBILE Q- COURSES COMMON TO MECHANICAL, AUTOMOBILE AND CIVIL M- COURSES FOR MECHANICAL ONLY.

| Sr. | Course |                                                        | Teaching Scheme |    |    |    | Examination Scheme |     |     |     |     |     |       |
|-----|--------|--------------------------------------------------------|-----------------|----|----|----|--------------------|-----|-----|-----|-----|-----|-------|
| No  | Code   | Course Name                                            | Th              | Pr | Tu | Cr | Term               | РТ  | Th  | Pr  | Tw  | Or  | Total |
| 1   | 6G201  | Engineering Graphics                                   | 2               | 2  |    | 4  | Ι                  |     |     | 50@ | 50  |     | 100   |
| 2   | 6R201  | Engineering Drawing                                    | 2               | 4  |    | 6  | II                 |     |     | 50# | 50  |     | 100   |
| 3   | 6Q201  | Engineering Mechanics                                  | 4               | 2  |    | 6  | II                 | 20  | 80  |     | 25  |     | 125   |
| 4   | 6G202  | Work Shop Practice                                     | 0               | 3  |    | 3  | Ι                  |     |     |     | 50  |     | 50    |
| 5   | 6R202  | Strength Of Materials                                  | 3               | 2  |    | 5  | III                | 20  | 80  |     | 50  |     | 150   |
| 6   | 6M202  | Machining Processes                                    | 2               | 4  |    | 6  | III                | 20  | 80  | 50# | 50  |     | 200   |
| 7   | 6G203  | Basics of Computer<br>System                           |                 | 2  |    | 2  | Ι                  |     |     | 25@ | 25  |     | 50    |
| 8   | 6R203  | Basics of Electrical<br>Engineering and<br>Electronics | 4               | 2  |    | 6  | IV                 | 20  | 80  |     | 50  |     | 150   |
| 9   | 6M204  | Mechanical Technology                                  | 3               | 3  |    | 6  | II                 | 20  | 80  |     | 50  |     | 150   |
| 10  | 6M205  | Thermal Engineering                                    | 3               | 2  |    | 5  | IV                 | 20  | 80  |     | 25  | 25# | 150   |
| 11  | 6M206  | Theory of Machines                                     | 3               | 2  |    | 5  | III                | 20  | 80  |     | 50  |     | 150   |
| 12  | 6M207  | Measurement &<br>Controls                              | 3               | 2  | 1  | 6  | IV                 | 20  | 80  |     | 25  | 25# | 150   |
| 13  | 6M208  | Computer aided<br>Drafting                             | 1               | 2  | -  | 3  | IV                 | -   | -   | 25@ | 25  | -   | 50    |
|     |        |                                                        |                 |    |    |    |                    | 160 | 640 | 200 | 525 | 50  |       |
|     |        |                                                        | 30              | 32 | 1  | 63 |                    | 8   | 00  |     | 775 |     | 1575  |

### Level 2: Basic Technology Courses

#### Scheme at Glance:

| Total number of courses offered | : 13   |
|---------------------------------|--------|
| Number of Compulsory Courses    | : 13   |
| Number of Optional Courses      | : Nil  |
| Total Courses                   | : 13   |
| Total Credits                   | : 63   |
| Total Marks                     | : 1575 |

#### G-COURSES COMMON TO ALL BRANCHES R-COURSES COMMON TO MECHANICAL AND AUTOMOBILE Q- COURSES COMMON TO MECHANICAL, AUTOMOBILE AND CIVIL M- COURSES FOR MECHANICAL ONLY

| Sr. | Course          | Course Name                                | Tea | achir | ng Sci | heme |      | Ex  | amin | ation | Scher | ne  |       |  |  |  |  |  |
|-----|-----------------|--------------------------------------------|-----|-------|--------|------|------|-----|------|-------|-------|-----|-------|--|--|--|--|--|
| No. | Code            | 9                                          | Th  | Pr    | Tu     | Cr   | Term | PT  | Th   | Pr    | Tw    | Or  | Total |  |  |  |  |  |
| 1   | 6G301           | English                                    | 2   | 2     |        | 4    | Ι    | 20  | 80   |       | 25    |     | 125   |  |  |  |  |  |
| 2   | 6G302           | Communication<br>Skills                    | 1   | 2     |        | 3    | II   |     |      |       | 50    | 25@ | 75    |  |  |  |  |  |
| 3   | 6G303           | Development of<br>Life Skills              |     | 2     |        | 2    | III  |     |      |       | 25    | 25@ | 50    |  |  |  |  |  |
| 4   | 6G304           | Environmental<br>Science                   |     | 2     |        | 2    | Ι    |     |      |       | 50    |     | 50    |  |  |  |  |  |
| 5   | 6G305           | Industrial<br>Organization &<br>Management | 3   | 2     |        | 5    | V    | 20  | 80   |       | 25    |     | 125   |  |  |  |  |  |
| 6   | 6G306           | Entrepreneurship<br>Development            | 2   | 2     |        | 4    | III  |     |      |       | 50    |     | 50    |  |  |  |  |  |
| 7   | 6G311-<br>6G325 | Non-<br>Exam(Elective-I)                   |     | 2     |        | 2    | II   |     |      |       |       |     |       |  |  |  |  |  |
| 8   | 6G311-<br>6G325 | Non-<br>Exam(Elective-I)                   |     | 2     |        | 2    | III  |     |      |       |       |     |       |  |  |  |  |  |
|     |                 |                                            |     |       |        |      |      | 40  | 160  | -     | 225   | 50  |       |  |  |  |  |  |
|     |                 |                                            | 8   | 16    |        | 24   |      | 200 | •    | 275   |       |     | 475   |  |  |  |  |  |

### Level 3: Allied Level Courses

#### Nmbik7mScheme at Glance:

| Total number of courses offered | : 8      |
|---------------------------------|----------|
| Number of Compulsory Courses    | : 6      |
| Number of Optional Courses      | : 2 (15) |
| Total Courses                   | : 8      |
| Total Credits                   | : 24     |
| Total Marks                     | : 475    |

G-COURSES COMMON TO ALL BRANCHES R-COURSES COMMON TO MECHANICAL AND AUTOMOBILE Q- COURSES COMMON TO MECHANICAL, AUTOMOBILE AND CIVIL M- COURSES FOR MECHANICAL ONLY

| Pr<br> | <b>Tw</b> 25  |      | Total |  |
|--------|---------------|------|-------|--|
|        | 25            |      | Jutal |  |
|        |               | 25#  | 150   |  |
|        |               |      |       |  |
|        | 25            |      | 125   |  |
|        |               |      |       |  |
|        | 25            |      | 150   |  |
|        | 25            | 25#  | 150   |  |
| 25#    | 50            |      | 75    |  |
|        | 25            | 25#  | 50    |  |
|        | 25            | 25#  | 150   |  |
|        | 25            | 25#  | 150   |  |
|        | 25            | 25#  | 150   |  |
|        | 25            | 25#  | 150   |  |
|        |               |      |       |  |
| minat  | nation Scheme |      |       |  |
| Pr     | Tw            | ' Or | Total |  |
|        |               |      |       |  |
|        | 25            | 25#  | 150   |  |
|        |               |      |       |  |
|        | 25            | 25#  | 150   |  |
|        | 25            | 25#  | 150   |  |
| 550    |               |      | 1450  |  |
|        |               |      |       |  |
|        |               |      |       |  |
|        |               |      |       |  |
|        |               |      |       |  |
|        |               |      |       |  |
|        |               |      |       |  |
|        |               |      |       |  |
|        |               |      |       |  |

# Level 4: Applied Level Courses

M-COURSES FOR MECHANICAL ONLY

# Level: 5 Diversified Level Courses

|      | Course         |                                     |    | Teacl | ning S | Scher | ne   |    | Exa | amina | tion S  | cheme |       |
|------|----------------|-------------------------------------|----|-------|--------|-------|------|----|-----|-------|---------|-------|-------|
| Sr.N | Code           | Course Name                         | Th | Pr    | Tu     | Cr    | Term | РТ | Th  | Pr    | Tw      | Or    | Total |
| 1    | 6M501          | Seminar                             |    | 2     |        | 2     | V    |    |     |       | 25      | 50@   | 75    |
| 2    | 6M502          | Project                             |    | 4     |        | 4     | VI   |    |     |       | 100     | 50#   | 150   |
| 3    | 6M503          | Vocational<br>Training              |    | 4     |        | 4     | VI   |    |     |       | 50      | 50#   | 100   |
| 4    | 6M504          | Design of<br>Machine<br>Elements    | 4  | 2     |        | 6     | V    | 20 | 80  |       | 25      | 25#   | 150   |
| 5    | 6M505          | Metrology and<br>Quality Control    | 3  | 2     |        | 5     | VI   | 20 | 80  | 25#   | 25      |       | 150   |
| 6    | 6M506          | Production<br>Engineering           | 3  | 2     |        | 5     | VI   | 20 | 80  |       | 25      |       | 125   |
| ELEC | TIVE-III       |                                     |    |       |        |       |      |    |     |       |         |       |       |
| Sr.N | Course<br>Code | Course Name                         |    | Teac  | hing S | chen  | ne   |    | Ex  | amina | tion Sc | heme  |       |
|      |                | GROUP B<br>(Any one )               | Th | Pr    | Tu     | Cr    | Term | РТ | Th  | Pr    | Tw      | Or    | Total |
| 1    | 6M507          | Advance<br>Manufacturing<br>Systems | 4  | 2     |        | 6     | VI   | 20 | 80  | _     | 25      | 25#   | 150   |
| 2    | 6M508          | Alternative<br>Energy Sources       | 4  | 2     |        | 6     | VI   | 20 | 80  | -     | 25      | 25#   | 150   |
| 3    | 6M509          | Production<br>Planning &<br>control | 4  | 2     |        | 6     | VI   | 20 | 80  | _     | 25      | 25#   | 150   |
|      |                |                                     | 14 | 18    |        | 32    | , 1  |    | 400 |       | 500     | 2011  | 900   |

#### Scheme at Glance:

| Total number of courses offered      | :7                        |
|--------------------------------------|---------------------------|
| Number of Compulsory Courses         | : 6                       |
| Number of Optional Courses           | : 1(3)                    |
| Total Courses                        | : 7                       |
| Total Credits                        | : 32                      |
| Total Marks                          | : 900                     |
| G-COURSES COMMON TO ALL BRAN         | CHES                      |
| <b>R</b> -COURSES COMMON TO MECHANIC | CAL AND AUTOMOBILE        |
| Q- COURSES COMMON TO MECHANI         | CAL, AUTOMOBILE AND CIVIL |
| M- COURSES FOR MECHANICAL ONL        | Y.                        |

| COURSE | COURSE                              |        |    | ACHII<br>CHEM |          |    | EXAMINATION SCHEME |    |    |    |       |  |  |
|--------|-------------------------------------|--------|----|---------------|----------|----|--------------------|----|----|----|-------|--|--|
| CODE   | TITLE                               | T<br>H | PR | CR            | TER<br>M | РТ | ТН                 | PR | TW | OR | TOTAL |  |  |
| 6G311  | Personality<br>Development          | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G312  | Fashion<br>Accessories              | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G313  | Hobby<br>Electronics                | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G314  | Spoken English                      | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G315  | German                              | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G316  | French                              | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G317  | Yoga                                | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G318  | Music<br>instrumental               | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G319  | Two wheeler<br>maintenance          | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G320  | Entrepreneurship<br>Development(EE) | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G321  | Electrical maintenance              | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G322  | Electronic<br>maintenance           | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G323  | Computer<br>Hardware<br>Maintenance |        |    |               |          |    |                    |    |    |    |       |  |  |
| 6G324  | Japanese                            | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G325  | Music vocal                         | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G326  | aerobics                            | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G327  | Indian classical<br>Dance           | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |
| 6G328  | Sewing machine maintenance          | -      | 02 | 02            |          |    |                    |    |    |    |       |  |  |

|                                                   | Year – I                                          | , second s | Year - II                                                         |                                                              | Year - III                                         |
|---------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| ODD Sem.                                          | EVEN Sem.                                         | ODD Sem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EVEN Sem.                                                         | ODD Sem.                                                     | EVEN Sem.                                          |
| Course Code<br>Course Title<br>Credits (Th+Pr)    | Course Code<br>Course Title<br>Credits<br>(Th+Pr) | Course Code<br>Course Title<br>Credits<br>(Th+Pr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Course Code<br>Course Title<br>Credits (Th+Pr)                    | Course Code<br>Course Title<br>Credits (Th+Pr)               | Course Code<br>Course Title<br>Credits<br>(Th+Pr)  |
| Workshop<br>Practice<br>6G202<br>(0+3)            | Engineering<br>Physics<br>6G103<br>(3+2)          | Theory of<br>Machines<br>6M206<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Computer<br>Integrated<br>Machining<br>6M406<br>(2+2)             | Heat Power<br>Engg<br>6M404<br>(3+2)                         | Production<br>Engg<br>6M506<br>(3+2)               |
| Basic<br>Mathematics<br>6G101<br>(3+1T)           | Engineering<br>Mechanics<br>6Q201<br>(4+2)        | Fluid Mechanics &<br>machinery<br>6M401<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thermal Engg<br>6M205<br>(3+2)                                    | Design of m/c<br>Element<br>6M504<br>(4+2)                   | Advance Mfg<br>Processes<br>6M408<br>(3+4)         |
| Engineering<br>Chemistry<br>6G104<br>(3+2)        | Engineering<br>Mathematics<br>6G102<br>(3+1T)     | Machining<br>Processes<br>6M202<br>(2+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Machine<br>Drawing<br>6M403<br>(2+4)                              | Tool Engg<br>6M409<br>(3+2)                                  | PROJECT<br>6M502<br>(0+4)                          |
| Engineering<br>Graphics<br>6G201<br>(2+2)         | Communication<br>Skills<br>6G302<br>(1+2)         | Mechanical<br>Engineering.<br>Materials<br>6M410<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Measurement &<br>Control<br>6M207<br>(3+2+1T)                     | Elective II<br>6M411-413<br>(Any one)<br>(4+2)               | Elective III<br>6M507-509<br>(Any one)<br>(4+2)    |
| Basics of<br>Computer<br>System<br>6G203<br>(0+2) | Engineering<br>Drawing<br>6R201<br>(2+4)          | Entrepreneurship<br>Development<br>6G306<br>(2+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Basics of<br>Electrical Engg<br>and Electronics<br>6R203<br>(4+2) | 3 D Modeling<br>6M405<br>(1+2)                               | Metrology and<br>Quality Control<br>6M505<br>(3+2) |
| English<br>6G301<br>(2+2)                         | Elective I<br>Non exam<br>6G311-6G325<br>(0+2)    | Development of<br>Life Skills<br>6G303<br>(0+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Industrial Fluid<br>Power<br>(6M402)<br>(3+2)                     | Seminar<br>6M501<br>(0+2)                                    | I.C.Engines<br>6M407<br>(4+2)                      |
| Environmental<br>Science<br>6G304<br>(0+2)        | Mechanical<br>Technology<br>6M204<br>(3+3)        | Non Exam<br>6G311-6G325<br>(0+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Computer Aided<br>Drafting<br>6M208<br>(1+2)                      | Industrial<br>Organization &<br>Management<br>6G305<br>(3+2) | Vocational<br>Training<br>6M503<br>(0+4)           |
|                                                   |                                                   | Strength of<br>Material<br>6R202<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                              |                                                    |
| 24                                                | 32                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 35                                                                | 32                                                           | 37                                                 |
| Total Credits                                     |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 194                                                               |                                                              |                                                    |

# Sample Path (X Class Entry) (With In plant Training)

| Sample Path for DSY students |
|------------------------------|
|------------------------------|

|                                                | Year – I                                          | , in the second s | Year - II                                                         |                                                              | Year - III                                         |
|------------------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------------|
| ODD Sem.                                       | EVEN Sem.                                         | ODD Sem.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | EVEN Sem.                                                         | ODD Sem.                                                     | EVEN Sem.                                          |
| Course Code<br>Course Title<br>Credits (Th+Pr) | Course Code<br>Course Title<br>Credits<br>(Th+Pr) | Course Code<br>Course Title<br>Credits<br>(Th+Pr)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Course Code<br>Course Title<br>Credits (Th+Pr)                    | Course Code<br>Course Title<br>Credits (Th+Pr)               | Course Code<br>Course Title<br>Credits<br>(Th+Pr)  |
|                                                |                                                   | Theory of<br>Machines<br>6M206<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Computer<br>Integrated<br>Machining<br>6M406<br>(2+2)             | Heat Power<br>Engineering<br>6M404<br>(3+2+1T)               | Production<br>Engineering<br>6M506<br>(3+2)        |
|                                                |                                                   | Fluid Mechanics &<br>machinery<br>6M401<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Thermal<br>Engineering<br>6M205<br>(3+2)                          | Design of m/c<br>Element<br>6M504<br>(4+2)                   | Advance Mfg<br>Processes<br>6M408<br>(3+4)         |
|                                                |                                                   | Machining<br>Processes<br>6R202<br>(2+4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Machine<br>Drawing<br>6M403<br>(2+4)                              | Tool<br>Engineering<br>6M409<br>(3+2)                        | PROJECT<br>6M502<br>(0+4)                          |
|                                                |                                                   | Mechanical<br>Engineering<br>Materials.<br>6M410<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Measurement &<br>Control<br>6M207<br>(3+2+1T)                     | Elective II<br>6M411-413<br>(Any one)<br>(4+2)               | Elective III<br>6M507-509<br>(Any one)<br>(4+2)    |
|                                                |                                                   | Entrepreneurship<br>Development<br>6G306<br>(2+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Basics of<br>Electrical Engg<br>and Electronics<br>6R203<br>(4+2) | 3 D Modeling<br>6M405<br>(1+2)                               | Metrology and<br>Quality Control<br>6M505<br>(3+2) |
|                                                |                                                   | Development of<br>Life Skills<br>6G303<br>(0+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Industrial Fluid<br>Power<br>(6M402)<br>(2+2)                     | Seminar<br>6M501<br>(0+2)                                    | I.C.Engines<br>6M407<br>(4+2)                      |
|                                                | Elective I<br>Non Exam<br>6G311-6G325<br>(0+2)    | Elective I<br>Non Exam<br>6G311-6G325<br>(0+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Computer Aided<br>Drafting<br>6M208<br>(1+2)                      | Industrial<br>Organization &<br>Management<br>6G305<br>(3+2) | Vocational<br>Training<br>6M503<br>(0 + 4)         |
|                                                |                                                   | Strength of<br>Material<br>6M202<br>(3+2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                   |                                                              |                                                    |
| 24                                             | 32                                                | 34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 34                                                                | 33                                                           | 37                                                 |
| Total Credits                                  |                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 194                                                               |                                                              |                                                    |

| SAMPLE PATH | FOR PTD(PAR | <b>Γ TIME DIPLOMA</b> ) |
|-------------|-------------|-------------------------|
|-------------|-------------|-------------------------|

|                                                     | Year - I                                                | Y                                             | ear - II                                                    | Year - I                                          | II                                                            | YEA                                           | R - IV                                |
|-----------------------------------------------------|---------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------|---------------------------------------------------------------|-----------------------------------------------|---------------------------------------|
| ODD Sem.                                            | EVEN Sem.                                               | ODD Sem.                                      | EVEN Sem.                                                   | ODD Sem.                                          | EVEN Sem.                                                     | ODD                                           | EVEN                                  |
| Course Title<br>Credits<br>(Th+Pr)                  | Course Title<br>Credits<br>(Th+Pr)                      | Course Title<br>Credits<br>(Th+Pr)            | Course<br>Title<br>Credits<br>(Th+Pr)                       | Course Title<br>Credits (Th+Pr)                   | Course Title<br>Credits<br>(Th+Pr)                            | Course<br>Title<br>Credits<br>(Th+Pr)         | Course<br>Title<br>Credits<br>(Th+Pr) |
| Basic.<br>Mathematics<br>(6G101)<br>(3+1T)          | Engineering<br>Physics<br>(6G103)<br>(3+2)              | Theory of<br>Machines<br>(6M206)<br>(3+2)     | Thermal<br>Engg<br>(6M205)<br>(3+2)                         | Machine<br>Drawing<br>(6M403)<br>(2+4)            | Design of m/c<br>Element<br>(6M504)<br>(4+2)                  | Tool<br>Engineering<br>(6M409)<br>(3+2)       |                                       |
| ENGINEERING<br>CHEMISTRY<br>(6G104)<br>(3+2)        | Entrepreneur<br>ship<br>Development<br>(6G306)<br>(2+2) | Engg.<br>Drawing<br>(6R201)<br>(2+4)          | Basics of<br>Electrical<br>Engg and Etx<br>(6R203)<br>(4+2) | Development of Life<br>Skills<br>(6G303)<br>(0+2) | Advanced<br>Manufactu-<br>ring Processes<br>(6M408)<br>(3+4)  | Elective-<br>II<br>(6M411-<br>413)<br>(4+2)   | MQC<br>(6M505)<br>(3+2)               |
| Engineering<br>Graphics<br>(6G201)<br>(2+2)         | Engineering<br>Mathematics<br>(6G102)<br>(3+1T)         | Environment<br>al science<br>(6G304)<br>(0+2) | SOM<br>(6R202)<br>(3+2)                                     | Measurement and<br>Control<br>(6M207)<br>(3+1T+2) | Computer<br>Integrated<br>Machining<br>(6M406)<br>(2+2)       | Seminar<br>(6M501)<br>(0+2)                   | IC<br>Engines<br>(6M407)<br>(4+2).    |
| Basics of<br>Computer<br>System<br>(6G203)<br>(0+2) | Communicati<br>on Skills<br>(6G302)<br>(1+2)            | Engineering<br>Mechanics<br>(6Q201)<br>(4+2)  | Machining<br>Processes<br>(6M202)<br>(2+4)                  | Fluid Mechanics &<br>Machinery(6M401)<br>(3+2)    | Industrial<br>Organization<br>&Management<br>(6G305)<br>(3+2) | Production<br>Engineering<br>(6M506)<br>(3+2) | Project<br>(6M502)<br>(0+4)           |
| English<br>(6G301)<br>(2+2)                         | Mechanical<br>Technology<br>(6M204)<br>(3+3)            | MEM<br>(6M410)<br>(3+2)                       | Computer<br>Aided<br>Drafting<br>(6M208)<br>(1+2)           | Heat power<br>Engg<br>(6M404)<br>(3+2)            | Industrial<br>Fluid Power<br>(6M402)<br>(3+2)                 | 3 D<br>Modeling<br>(6M405)<br>(1+2)           |                                       |
| 19                                                  | 22                                                      | 24                                            | 25                                                          | 24                                                | 27                                                            | 21                                            | 21                                    |
| Total<br>Credits                                    |                                                         |                                               |                                                             |                                                   |                                                               |                                               | 183                                   |

**Exemptions**: WP (0+3) +(Elective I) NON EXAM (0+4) +Vocational Training (0+4)

# **TOTAL CREDITS EXEMPTED** = 11

# MECHANICAL ENGINEERING DEPARTMENT SEMESTERWISE COURSES

|        |                          |                | Tea | ichii | ng     |                                    |     |            |    |      |       |     |
|--------|--------------------------|----------------|-----|-------|--------|------------------------------------|-----|------------|----|------|-------|-----|
|        |                          | Scheme/Credits |     |       |        | Examination Scheme (Maximum Marks) |     |            |    |      |       |     |
| Course | Course Name              |                |     |       |        |                                    |     |            |    |      |       | TH  |
| Code   | Course Maine             |                |     |       |        |                                    |     |            |    |      |       | EXA |
|        |                          |                |     |       | Total  |                                    |     |            |    | PA   |       | Μ   |
|        |                          | TH             | PR  | Tu    | Credit | PT                                 | TH  | PR         | OR | (TW) | Total | HR  |
| 6G101  | <b>Basic Mathematics</b> | 3              | -   | 1     | 4      | 20                                 | 80  | -          | -  | -    | 100   | 3   |
|        | Engineering              |                |     |       |        |                                    |     |            |    |      |       |     |
| 6G104  | Chemistry                | 3              | 2   | -     | 5      | 20~                                | 80~ | <u>25@</u> | -  | 25   | 150   | 3   |
|        | Engineering              |                |     |       |        |                                    |     |            |    |      |       |     |
| 6G201  | Graphics                 | 2              | 2   | -     | 4      | -                                  | -   | <u>50@</u> | -  | 50   | 100   | -   |
| 6G202  | Workshop Practice        | -              | 3   | -     | 3      | -                                  | -   | -          | -  | 50   | 50    | -   |
|        | Basics of                |                |     |       |        |                                    |     |            |    |      |       |     |
| 6G203  | Computer System          | -              | 2   | -     | 2      | -                                  | -   | <u>25@</u> | -  | 25   | 50    | -   |
| 6G301  | English                  | 2              | 2   | -     | 4      | 20                                 | 80  | -          | -  | 25   | 125   | 3   |
|        | Environmental            |                |     |       |        |                                    |     |            |    |      |       |     |
| 6G304  | Science                  | -              | 2   | -     | 2      | -                                  | -   | -          | -  | 50   | 50    | -   |
|        |                          | 10             | 13  | 1     | 24     | 60                                 | 240 | 100        |    | 225  | 625   |     |

### FIRST SEMESTER

### **SECOND SEMESTER**

|       |                            | Teac | hing Sc  | home   | Credits |                   | Evami | nation S   | chama      | (Maxim | um Mar | (s)  |
|-------|----------------------------|------|----------|--------|---------|-------------------|-------|------------|------------|--------|--------|------|
| Cours |                            | Teac | ining Se | /neme/ | Cicuits | Examination Schen |       |            |            |        |        |      |
| e     | Course Name                |      |          |        |         |                   |       |            |            |        |        | TH   |
| Code  |                            |      |          |        | Total   |                   |       |            |            | PA     |        | EXA  |
|       |                            | TH   | PR       | TU     | Credit  | PT                | TH    | PR         | OR         | (TW)   | Total  | M HR |
|       | Engineering                |      |          |        |         |                   |       |            |            |        |        |      |
| 6G102 | Mathematics                | 3    | -        | 1      | 4       | 20                | 80    | -          | -          | -      | 100    | 3    |
| 6G103 | <b>Engineering Physics</b> | 3    | 2        | -      | 5       | 20                | 80    | <u>25@</u> | -          | 25     | 150    | 3    |
|       | Engineering                |      |          |        |         |                   |       |            |            |        |        |      |
| 6Q201 | Mechanics                  | 4    | 2        | -      | 6       | 20                | 80    | -          | -          | 25     | 125    | 3    |
|       | Engineering                |      |          |        |         |                   |       |            |            |        |        |      |
| 6R201 | Drawing                    | 2    | 4        | -      | 6       | -                 | -     | <u>50#</u> | -          | 50     | 100    | -    |
|       | Communication              |      |          |        |         |                   |       |            |            |        |        |      |
| 6G302 | Skills                     | 1    | 2        | -      | 3       | -                 | -     | -          | <u>25@</u> | 50     | 75     | -    |
| 6M20  | Mechanical                 |      |          |        |         |                   |       |            |            |        |        |      |
| 4     | Technology                 | 3    | 3        | -      | 6       | 20                | 80    | -          | _          | 50     | 150    | 3    |
| 6G311 | Non exam(Elective-         |      |          |        |         |                   |       |            |            |        |        |      |
| -25   | I)                         | -    | 2        | -      | 2       | -                 | -     | -          | -          | -      | -      | -    |
|       |                            | 16   | 15       | 1      | 32      | 80                | 320   | 75         | 25         | 200    | 700    |      |

|                |                       | Teac | hing So | cheme/ | /Credits | E   | Examina | ation S    | cheme (    | Maxin | num Mar | ·ks)      |
|----------------|-----------------------|------|---------|--------|----------|-----|---------|------------|------------|-------|---------|-----------|
| Course<br>Code | Course Name           | TU   |         |        | Total    |     |         |            |            | PA    | F       | TH<br>EXA |
|                |                       | TH   | PR      | TU     | Credit   | PT  | TH      | PR         | OR         | (TW)  | Total   | M HR      |
| 6M206          | Theory of Machines    | 3    | 2       | -      | 5        | 20  | 80      | -          | -          | 50    | 150     | 3         |
|                | Fluid Mechanics &     |      |         |        |          |     |         |            |            |       |         |           |
| 6M401          | Machinery             | 3    | 2       | -      | 5        | 20  | 80      | =          | 25#        | 25    | 150     | 3         |
| 6M202          | Machining Processes   | 2    | 4       | -      | 6        | 20  | 80      | <u>50#</u> | -          | 50    | 200     | 3         |
|                | Mechanical            |      |         |        |          |     |         |            |            |       |         |           |
| 6M410          | Engineering Materials | 3    | 2       | -      | 5        | 20  | 80      | -          | 25#        | 25    | 150     | 3         |
|                | Entrepreneurship      |      |         |        |          |     |         |            |            |       |         |           |
| 6G306          | Development           | 2    | 2       | -      | 4        | -   | -       | ±.         | -          | 50    | 50      | -         |
|                | Development of Life   |      |         |        |          |     |         |            |            |       |         |           |
| 6G303          | Skills                | -    | 2       | -      | 2        | -   | -       | -          | <u>25@</u> | 25    | 50      | -         |
| 6R202          | Strength of materials | 3    | 2       | -      | 5        | 20  | 80      | -          | -          | 50    | 150     | 3         |
| 6G311 -        |                       |      |         |        |          |     |         |            |            |       |         |           |
| 25             | Non Exam(Elective-I)  | -    | 2       | -      | 2        | -   | -       | -          | -          | -     | -       | -         |
|                |                       | 16   | 18      | -      | 34       | 100 | 400     | 50         | 75         | 275   | 900     |           |

# THIRD SEMESTER

# FOURTH SEMESTER

|                |                                | S  | Tea<br>Schem | aching<br>ne/Cre | -      | Examination Scheme (Maximum Marks) |     |     |            |      |       | (arks)         |
|----------------|--------------------------------|----|--------------|------------------|--------|------------------------------------|-----|-----|------------|------|-------|----------------|
| Course<br>Code | Course Name                    |    |              |                  | Total  |                                    |     |     |            | PA   |       | TH<br>EXA<br>M |
|                |                                | TH | PR           | TU               | Credit | PT                                 | TH  | PR  | OR         | (TW) | Total | HR             |
| 6M406          | Computer Integrated            |    |              |                  |        |                                    |     |     |            |      |       |                |
|                | Machining                      | 2  | 2            | -                | 4      | -                                  | -   | -   | <u>25#</u> | 25   | 50    | -              |
| 6M205          | Thermal Engineering            | 3  | 2            | -                | 5      | 20                                 | 80  | -   | 25#        | 25   | 150   | 3              |
| 6M403          | Machine Drawing                | 2  | 4            | -                | 6      | 20                                 | 80  | -   | 25#        | 25   | 150   | 4              |
| 6M207          | Measurement & Control          | 3  | 2            | 1                | 6      | 20                                 | 80  | Ξ   | 25#        | 25   | 150   | 3              |
| 6R203          | Basics of Electrical           |    |              |                  |        |                                    |     |     |            |      |       |                |
|                | Engineering and<br>Electronics | 4  | 2            | -                | 6      | 20                                 | 80  | -   |            | 50   | 150   | 3              |
| 6M402          | Industrial Fluid Power         | 3  | 2            | -                | 5      | 20                                 | 80  | -   | _          | 25   | 125   | 3              |
|                | Computer Aided                 |    |              |                  |        |                                    |     |     |            |      |       |                |
| 6M208          | Drafting                       | 1  | 2            | -                | 3      | -                                  | -   | 25@ | _          | 25   | 50    | -              |
|                |                                | 18 | 16           | 1                | 35     | 100                                | 400 | 25  | 100        | 200  | 825   |                |

| Gamma          |                | S  | Tea<br>Schem | ching<br>e/Cre |        | Ех  | kamii | nation | Sche      | eme (Ma | aximum | Marks) |
|----------------|----------------|----|--------------|----------------|--------|-----|-------|--------|-----------|---------|--------|--------|
| Course<br>Code | Course Name    |    |              |                |        |     |       |        |           |         |        | Theory |
|                |                |    |              |                | Total  |     |       |        |           | PA      |        | Exam   |
|                |                | TH | PR           | TU             | Credit | PT  | TH    | PR     | OR        | (TW)    | Total  | Hours  |
|                | Heat Power     |    |              |                |        |     |       |        |           |         |        |        |
| 6M404          | Engineering    | 3  | 2            | -              | 5      | 20  | 80    | -      | 25#       | 25      | 150    | 3      |
|                | Design of m/c  |    |              |                |        |     |       |        |           |         |        |        |
| 6M504          | Element        | 4  | 2            | -              | 6      | 20  | 80    | -      | 25#       | 25      | 150    | 4      |
|                | Tool           |    |              |                |        |     |       |        |           |         |        |        |
| 6M409          | Engineering    | 3  | 2            |                | 5      | 20  | 80    |        | 25#       | 25      | 150    | 3      |
| 6M411          |                |    |              |                |        |     |       |        |           |         |        |        |
| -413           | Elective II    | 4  | 2            | -              | 6      | 20  | 80    | -      | 25#       | 25      | 150    | 3      |
| 6M405          | 3 D Modeling   | 1  | 2            | -              | 3      | -   | -     | 25#    | _         | 50      | 75     | -      |
|                |                |    |              |                |        |     |       |        | <u>50</u> |         |        |        |
| 6M501          | Seminar        | -  | 2            | -              | 2      | -   | -     | -      | <u>@</u>  | 25      | 75     | -      |
|                | Industrial     |    |              |                |        |     |       |        |           |         |        |        |
|                | Organization & |    |              |                |        |     |       |        |           |         |        |        |
| 6G305          | Management     | 3  | 2            | -              | 5      | 20  | 80    | -      | -         | 25      | 125    | 3      |
|                |                | 18 | 14           | -              | 32     | 100 | 400   | 25     | 150       | 200     | 875    |        |

# FIFTH SEMESTER

# SIXTH SEMESTER

|                |               |    |       | achin  |        |                                    |     |          |            |      |      |        |
|----------------|---------------|----|-------|--------|--------|------------------------------------|-----|----------|------------|------|------|--------|
| Course         |               |    | Schen | ne/Cre | edits  | Examination Scheme (Maximum Marks) |     |          |            |      |      |        |
| Course<br>Code | Course Name   |    |       |        |        |                                    |     |          |            |      |      | Theory |
| Coue           |               |    |       |        | Total  |                                    |     |          |            | PA   | Tota | Exam   |
|                |               | TH | PR    | TU     | Credit | PT                                 | TH  | PR       | OR         | (TW) | 1    | Hours  |
|                | Production    |    |       |        |        |                                    |     |          |            |      |      |        |
| 6M506          | Engineering   | 3  | 2     |        | 5      | 20                                 | 80  | -        | Ξ          | 25   | 125  | 3      |
|                | Advance       |    |       |        |        |                                    |     |          |            |      |      |        |
|                | Manufacturing |    |       |        |        |                                    |     |          |            |      |      |        |
| 6M408          | Processes     | 3  | 4     | -      | 7      | 20                                 | 80  | _        | 25#        | 25   | 150  | 3      |
| 6M502          | Project       | -  | 4     | -      | 4      | -                                  | -   | -        | 50#        | 100  | 150  |        |
| 6M507          |               |    |       |        |        |                                    |     |          |            |      |      |        |
| -509           | Elective III  | 4  | 2     | -      | 6      | 20                                 | 80  | _        | 25#        | 25   | 150  | 3      |
|                | Metrology and |    |       |        |        |                                    |     |          |            |      |      |        |
|                | Quality       |    |       |        |        |                                    |     |          |            |      |      |        |
| 6M505          | Control       | 3  | 2     |        | 5      | 20                                 | 80  | 25#      | _          | 25   | 150  | 3      |
| 6M407          | I.C.Engines   | 4  | 2     | -      | 6      | 20                                 | 80  | -        | <u>25#</u> | 25   | 150  | 3      |
|                | Vocational    |    |       |        |        |                                    |     |          |            |      |      |        |
| 6M503          | Training      | 0  | 4     | -      | 4      | -                                  | -   | <u>_</u> | <u>50#</u> | 50   | 100  | -      |
|                |               | 17 | 20    |        | 37     | 100                                | 400 | 25       | 175        | 275  | 975  |        |

| Sr. | Course   |                                | Т  | eachi | ng S | Sche | me   |     | Exa | mina     | tion S | Schei | me    |
|-----|----------|--------------------------------|----|-------|------|------|------|-----|-----|----------|--------|-------|-------|
| No  | Code     | Course Name                    | Th | Pr    | Т    | Cr   | Term | РТ  | Th  | Pr       | Tw     | Or    | Total |
|     |          | Mechanical                     |    |       |      |      |      |     |     |          |        |       |       |
| 1   | 6M410    | Engineering                    |    |       |      |      |      |     |     |          |        |       |       |
|     |          | Materials                      | 3  | 2     | -    | 5    | III  | 20  | 80  | 0        | 25     | 25#   | 150   |
|     |          | Computer                       |    |       |      |      |      |     |     |          |        |       |       |
| 2   | 6M406    | Integrated                     |    |       |      |      |      |     |     |          |        |       |       |
|     |          | Machining                      | 2  | 2     | -    | 4    | IV   | 0   | 0   | -        | 25     | 25#   | 50    |
| 3   | 6M502    | Project                        | 0  | 4     | -    | 4    | VI   | 0   | 0   | 0        | 100    | 50#   | 150   |
| 4   | 6M501    |                                |    |       |      |      |      |     |     |          |        | 50    |       |
| -   | 01/15/01 | Seminar                        | 0  | 2     | -    | 2    | V    | 0   | 0   | 0        | 25     | @     | 75    |
|     |          | Advanced                       |    |       |      |      |      |     |     |          |        |       |       |
| 5   | 6M408    | Manufacturing                  | _  |       |      |      |      |     |     | _        |        |       |       |
|     |          | Processes                      | 3  | 4     | -    | 7    | VI   | 20  | 80  | 0        | 25     | 25#   | 150   |
| 6   |          | Heat Power                     | -  |       |      | _    |      | • • |     |          |        |       |       |
| Ű   | 6M404    | Engineering                    | 3  | 2     | -    | 5    | V    | 20  | 80  | 0        | 25     | 25#   | 150   |
| _   |          | Design of                      |    |       |      |      |      |     |     |          |        |       |       |
| 7   | 6M504    | Machine                        |    | -     |      | -    |      | • • |     | <u>^</u> | ~ -    |       | 1.70  |
|     |          | Elements                       | 4  | 2     | -    | 6    | V    | 20  | 80  | 0        | 25     | 25#   | 150   |
| 8   | 6M505    | Metrology<br>&Quality Control. | 3  | 2     | -    | 5    | VI   | 20  | 80  | 25#      | 25     | 0     | 150   |
| 9   | 6M409    | Tool Engg                      | 3  | 2     |      | 5    | V    | 20  | 80  | 0        | 25     | 25#   | 150   |
| 10  | 6M407    | IC Engines                     | 4  | 2     | -    | 6    | VI   | 20  | 80  | 0        | 25     | 25#   | 150   |
| 11  | 6M411-   |                                |    |       |      |      |      |     |     |          |        |       |       |
| 11  | 13       | Elective Group II              | 4  | 2     | -    | 6    | V    | 20  | 80  | 0        | 25     | 25#   | 150   |
| 12  | 6M507-   |                                |    |       |      |      |      |     |     |          |        |       |       |
| 12  | 509      | Elective Group III             | 4  | 2     | -    | 6    | VI   | 20  | 80  | 0        | 25     | 25#   | 150   |
| 13  | 6M405    | 3-D Modeling                   | 1  | 2     | -    | 3    | V    | 0   | 0   | 25#      | 50     | 0     | 75    |
|     |          | Total Credits                  | 34 | 30    | -    | 64   |      | 180 | 720 | 50       | 425    | 325   | 1700  |

# LIST OF DIPLOMA AWARDED COURSES

# SIXTH REVISION OF CURRICULUM (OBE)

### DIPLOMA IN MECHANICAL ENGINEERING PROGRAMME - YEAR 2017-18

#### INDEX

| Sr. | Title                                                     | Page No. |
|-----|-----------------------------------------------------------|----------|
| No. |                                                           |          |
| 1   | Certificate of PBOS                                       | i        |
| 2   | Certificate of BOS                                        | ii       |
| 3   | Certificate of Equivalence                                | iii      |
| 4   | Preface                                                   | iv       |
| 5   | Vision & Mission of Institute                             | vi       |
| 6   | Vision & Mission of Department                            | vii      |
| 7   | Scope of Diploma in Mechanical. Engineering.              | viii     |
| 8   | Area of Work/Employment                                   | ix       |
| 9   | Job function                                              | Х        |
| 10  | Skill Identification For Mechanical Engineering           | xiii     |
| 11  | Curriculum Design & Development                           | XV       |
| 12  | Programme Outcomes (PO's)                                 | xxiii    |
|     | Programme Educational Objectives(PEO's)                   | xxiii    |
|     | Programme Specific Objectives(PSO's)                      | xxiv     |
| 13  | Mapping of Mission And Programme Educational Objectives   | XXV      |
| 14  | Mapping of Programme Educational Objectives and Programme | xxvi     |
|     | Outcomes                                                  |          |
| 15  | Mapping of Programme Outcome And Courses                  | xxvii    |
| 16  | Programme Structure at a Glance                           | xxxi     |
| 17  | Level wise Course Structure                               | xxxii    |
| 18  | List of Non Exam Courses                                  | xxxvii   |
| 19  | Sample Path(Regular)                                      | xxxviii  |
| 20  | Sample Path(DSY)                                          | xxxix    |
| 21  | Sample Path(PTD)                                          | xl       |
| 22  | Semester wise Course Structure                            | xli      |
| 23  | List of Diploma Awarded Subjects                          | xliv     |

| Sr. | Title                            | Course Code | Page No. |
|-----|----------------------------------|-------------|----------|
| No. |                                  |             |          |
|     | I-SEMESTER COU                   | RSES        |          |
| 1   | Workshop Practice                | 6G202       | 1-8      |
| 2   | Basic Mathematics                | 6G101       | 9-13     |
| 3   | Engineering Chemistry            | 6G104       | 14-21    |
| 4   | Engineering Graphics             | 6G201       | 22-28    |
| 5   | Basics of Computers              | 6G203       | 29-35    |
| 6   | English                          | 6G301       | 36-41    |
| 7   | Environmental Science            | 6G304       | 42-49    |
|     | II-SEMESTER COU                  | IRSES       |          |
| 8   | Engineering Physics              | 6G103       | 50-56    |
| 9   | Engineering Mechanics            | 6Q201       | 57-66    |
| 10  | Engineering Mathematics          | 6G102       | 67-71    |
| 11  | Communication Skills             | 6G302       | 72-77    |
| 12  | Engineering Drawing              | 6R201       | 78-84    |
| 13  | Non exam I (Elective-I)          | 6G311-28    | 85       |
| 14  | Mechanical Technology            | 6M204       | 86-92    |
|     | III-SEMESTER COU                 | JRSES       |          |
| 15  | Theory of Machines               | 6M206       | 93-99    |
| 16  | Fluid Mechanics & Machinery      | 6M401       | 100-107  |
| 17  | Machining Processes              | 6M202       | 108-115  |
| 18  | Mechanical Engineering Materials | 6M410       | 116-127  |
| 19  | Entrepreneurship Development     | 6G306       | 128-135  |
| 20  | Development of Life skills       | 6G303       | 136-143  |
| 21  | Non exam II (Elective-I)         | 6G311-28    | 144      |
| 22  | Strength of Materials            | 6R202       | 145-152  |
|     | IV-SEMESTER COU                  | JRSES       | 1        |
| 23  | Computer Integrated Machining    | 6M406       | 153-159  |
| 24  | Thermal Engg                     | 6M205       | 160-169  |

| 25 | Machine Drawing                               | 6M403 | 170-177 |
|----|-----------------------------------------------|-------|---------|
| 26 | Measurement & Control                         | 6M207 | 178-186 |
| 27 | Basic of Electrical Engg and Etx              | 6R203 | 187-195 |
| 28 | Industrial Fluid Power                        | 6M402 | 196-207 |
| 29 | Computer Aided Drafting                       | 6M208 | 208-216 |
|    | V-SEMESTER COURSES                            | 8     |         |
| 30 | Heat Power Engg                               | 6M404 | 217-224 |
| 31 | Design of m/c Element                         | 6M504 | 225-232 |
| 32 | Tool Engg                                     | 6M409 | 233-240 |
| 33 | Power Plant Engineering(Elective-II)          | 6M411 | 241-249 |
| 34 | Refrigeration & Air conditioning(Elective-II) | 6M412 | 250-260 |
| 35 | Automobile Engineering(Elective-II)           | 6M413 | 261-269 |
| 36 | 3 D Modeling                                  | 6M405 | 270-277 |
| 37 | Seminar                                       | 6M501 | 278-283 |
| 38 | Industrial Organization& Management           | 6G305 | 284-291 |
|    | VI-SEMESTER COURSE                            | S     |         |
| 39 | Production Engg                               | 6M506 | 292-299 |
| 40 | Advance Mfg Process                           | 6M408 | 300-306 |
| 41 | Project                                       | 6M502 | 307-312 |
| 42 | Advance Manufacturing Systems(Elective-III)   | 6M507 | 313-320 |
| 43 | Alternate Energy Sources(Elective-III)        | 6M508 | 321-333 |
| 44 | Production Planning & control(Elective-III)   | 6M509 | 334-339 |
| 45 | Metrology and Quality Control                 | 6M505 | 340-347 |
| 46 | I.C.Engines                                   | 6M407 | 348-356 |
| 47 | Vocational Training                           | 6M503 | 357-368 |
| 48 | Equivalence courses                           |       | 369-376 |

#### COURSE TITLE WORKSHOP PRACTICE

#### COURSE CODE 6G202

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Common to all branches                            | First/Second              |
| CE/ME/AE/EE/ET/IT/CO                              |                           |

#### 1. RATIONALE :

Workshop Practice is a basic engineering course. Diploma Engineers while working at worksites / in industries, supervises various skilled man power during industrial / site related process. He is required to be conversant with various skills. These basic skills are imparted in basic shops like wood working, fitting, welding, plumbing and sheet metal shop is essential for technician to perform his/her duties in industries. Students are able to perform various operations using hand tool equipment and machineries in various shops. Working in workshop develops the attitude of group working and safety awareness. This course provides industrial environment in the educational institute.

#### 2. COMPETENCY :

"Prepare simple jobs on the shop floor of the engineering workshop."

| Te | Teaching SchemeTotalCredits |       |         | Examination Scheme |       |             |       |             |  |  |  |
|----|-----------------------------|-------|---------|--------------------|-------|-------------|-------|-------------|--|--|--|
|    | (In H                       | ours) | (L+T+P) | Theory             | Marks | Practical I | Marks | Total Marks |  |  |  |
| L  | Т                           | Р     | С       | ESE                | PT    | ESE(OR)     | PA    |             |  |  |  |
|    |                             | 03    | 03      |                    |       |             | 50    | 50          |  |  |  |

#### 3. TEACHING AND EXAMNATION SCHEME :

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR- Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

#### 4. COURSE OUTCOMES :

At the end of this course, students would be able to –

- 1. Select tools and machinery according to job.
- 2. Use hand tools in different shops for performing different operation.
- 3. Operate equipment and machinery in different shops.
- 4. Prepare job according to drawing.
- 5. Maintain workshop related tools, equipment and machineries.

# 5. DETAILED COURSE CONTENTS :

| Unit                         | Major Learning Outcomes                                                                                 | Topics and Sub-topics                                                                                              |
|------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|                              | (in cognitive domain)                                                                                   |                                                                                                                    |
| Unit – I<br>General Workshop | <ul><li>1a. Follow safety practices.</li><li>1b. Explain the procedure for extinguishing fire</li></ul> | <ol> <li>Safety Practices, Causes of<br/>accidents, General safety rules,<br/>Safety signs and symbols.</li> </ol> |
| Practice                     |                                                                                                         | 1.2 First Aid                                                                                                      |
| Thethee                      | 1c. Use firefighting equipment                                                                          | 1.3 Fire, Causes of Fire, Basic ways                                                                               |
|                              | 1d. Locate various machines                                                                             | of extinguishing the fire<br>Classification of fire, Class A,                                                      |
|                              | and equipment in workshop                                                                               | B,C, D, Firefighting equipment,                                                                                    |
|                              | 1e. Follow good housekeeping.                                                                           | fire extinguishers, and their                                                                                      |
|                              |                                                                                                         | types.                                                                                                             |
|                              |                                                                                                         | 1.4 Workshop Layout                                                                                                |
|                              |                                                                                                         | 1.5 Issue and return system of tools, equipment and consumables.                                                   |
|                              | 2a. Identify fitting tools.                                                                             | 2.1 Fitting hand tools bench vice,                                                                                 |
| Unit– II                     |                                                                                                         | hammers, chisels, files,                                                                                           |
| E:44in a                     | 2b. Explain operation of fitting                                                                        | hacksaw, surface plate, punch, v                                                                                   |
| Fitting                      | shop machines                                                                                           | block, angle plate, try square,                                                                                    |
|                              | 2c. Use hand tools                                                                                      | marking block, steel rule, twist                                                                                   |
|                              | 2d Operate machineries                                                                                  | drills, reamers, tap set, die set                                                                                  |
|                              | 2d. Operate machineries.                                                                                | and their Specifications                                                                                           |
|                              | 2e. Perform fitting operations                                                                          | 2.2 Operation of fitting shops<br>machineries - Drilling machine,                                                  |
|                              | 2f. Maintain tools, equipment                                                                           | Power saw, grinder their                                                                                           |
|                              | and machineries.                                                                                        | specifications and maintenance.                                                                                    |
|                              |                                                                                                         | 2.3 Basic process chipping, filling,                                                                               |
|                              |                                                                                                         | scraping, grinding, marking,<br>sawing, drilling, tapping, dieing,<br>reaming etc.                                 |
|                              | 3a. Identify plumbing tools.                                                                            | 3.1 Plumbing hand tools pipe vice,                                                                                 |
| Unit– III                    | 3b. Explain operation of fitting                                                                        | pipe bending equipment, pipe                                                                                       |
| Dhumhing                     | shop machines                                                                                           | wrenches, dies and their                                                                                           |
| Plumbing                     | 3c. Use hand tools                                                                                      | Specifications                                                                                                     |
|                              | 3d. Operate machineries.                                                                                | 3.2 Pipe fittings- bends, elbows, tees,                                                                            |
|                              | 3e. Perform plumbing                                                                                    | cross, coupler, socket, reducer,                                                                                   |
|                              | operations                                                                                              | cap, plug, nipple and their                                                                                        |
|                              | 3f. Maintain tools, equipment                                                                           | Specifications                                                                                                     |
|                              | and machineries.                                                                                        | 3.3 Operation of Machineries in                                                                                    |
|                              |                                                                                                         | plumbing shops- pipe bending                                                                                       |
|                              |                                                                                                         | machine their specifications and                                                                                   |

|                  |                                                                                                                                                   | maintenance.                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                                                                                                                                                   | 3.4 Basic process cutting, threading.                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  |                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Unit– IV         | <ul><li>4a. Identify metal joining tools.</li><li>4b. Explain gas and arc</li></ul>                                                               | 4.1 Gas welding hand tools- welding<br>torch, welding tip, pressure<br>regulator, oxygen and acetylene                                                                                                                                                                                                                                                                                                                                  |
| Metal Joining    | welding procedure                                                                                                                                 | cylinders, spark lighter and their                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  | 4c. Use hand tools.                                                                                                                               | Specifications<br>4.2 Arc welding hand tools-                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | <ul> <li>4d. Perform welding,<br/>soldering, brazing<br/>operations</li> <li>4e. Maintain tools, equipment<br/>and machineries.</li> </ul>        | <ul> <li>electrode holder, cable</li> <li>connector, cable lugs, chipping</li> <li>hammer, earthling clamp, wire</li> <li>brush and their Specifications</li> <li>4.3 Operation of machineries in</li> <li>welding shops- arc welding</li> <li>transformer their specifications</li> </ul>                                                                                                                                              |
|                  |                                                                                                                                                   | <ul> <li>and maintenance.</li> <li>4.4 Welding Electrode, filler rod,<br/>fluxes, and solders.</li> <li>4.5 Basic process welding, brazing<br/>and soldering.</li> </ul>                                                                                                                                                                                                                                                                |
| Unit– V          | 5a. Select wood working tools as per job/ requirement.                                                                                            | 5.1 Types of artificial woods such as plywood, block board,                                                                                                                                                                                                                                                                                                                                                                             |
| Furniture Making | <ul><li>5b.Explain operation of wood<br/>working machines</li><li>5c. Use hand tools</li></ul>                                                    | hardboard, laminated boards,<br>Veneer, fiber Boards and their<br>applications.                                                                                                                                                                                                                                                                                                                                                         |
|                  | <ul> <li>5d. Operate machineries.</li> <li>5e. Perform wood working operations</li> <li>5f. Maintain tools, equipment and machineries.</li> </ul> | <ul> <li>5.2 Wood working hand tools<br/>carpentry vice, marking and<br/>measuring tools, saws, claw<br/>hammer, mallet, chisels, plans,<br/>squares, and their specifications</li> <li>5.3 Operation of wood working<br/>machineries - Wood turning<br/>lathe, circular saw, their<br/>specifications and maintenance.</li> <li>5.4 Basic process- marking, sawing,<br/>planning, chiseling, turning,<br/>grooving, boring.</li> </ul> |
| Unit–VI          | <ul><li>6a. Identify sheet metal tools.</li><li>6b. Explain operation of sheet</li></ul>                                                          | 6.1 Sheet metal hand tools snip,<br>shears sheet gauge, straight                                                                                                                                                                                                                                                                                                                                                                        |
| Sheet Metal      | metal machineries.<br>6c. Use hand tools<br>6d. Operate sheet metal                                                                               | edge, L square, scriber, divider,<br>trammel, punches, pliers, stakes,<br>groovers, limit set and their                                                                                                                                                                                                                                                                                                                                 |
|                  |                                                                                                                                                   | groovers, limit set and their                                                                                                                                                                                                                                                                                                                                                                                                           |

|     | machineries.               |     | Specifications                   |
|-----|----------------------------|-----|----------------------------------|
| 6e. | Perform bending operations | 6.2 | Operation of machineries in      |
| 6f. | Maintain tools, equipment  |     | sheet metal shops- sheet cutting |
|     | and machineries.           |     | and bending machine their        |
|     |                            |     | specifications and maintenance.  |
|     |                            | 6.3 | Basic process-marking,           |
|     |                            |     | bending, folding, edging,        |
|     |                            |     | seaming, staking, riveting.      |

#### 6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (Practical)

| Unit<br>No. | Unit Title                | Teaching<br>Hours | Distribution of Theory Marks |            |            |                |  |  |  |
|-------------|---------------------------|-------------------|------------------------------|------------|------------|----------------|--|--|--|
| 110.        |                           | 110015            | R<br>Level                   | U<br>Level | A<br>Level | Total<br>Marks |  |  |  |
| Ι           | General Workshop Practice | 03                | 01                           | 01         | 03         | 05             |  |  |  |
| II          | Fitting                   | 12                | -                            | 03         | 06         | 09             |  |  |  |
| III         | Plumbing                  | 06                | -                            | 02         | 07         | 09             |  |  |  |
| IV          | Metal Joining             | 09                | 01                           | 02         | 06         | 09             |  |  |  |
| V           | Furniture Making          | 09                | -                            | 02         | 07         | 09             |  |  |  |
| VI          | Sheet Metal               | 09                | -                            | 02         | 07         | 09             |  |  |  |
|             | Total                     | 48                | 02                           | 12         | 36         | 50             |  |  |  |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

### 7. SUGGESTED EXERCISES/PRACTICALS :

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive, psychomotor and affective domain**) so that students are able to acquire the competencies.

| Sr. | Unit | Practical Exercises                                                                | Approx.      |
|-----|------|------------------------------------------------------------------------------------|--------------|
| No. | No.  | (Outcomes in Psychomotor Domain)                                                   | Hrs.required |
| 1   | Ι    | Perform mock drill session in group of minimum 10 students for extinguishing fire. | 03           |

| 2 | II        | Prepare job involving marking, punching, sawing,<br>chamfering, drilling, tapping operations as per given<br>drawing. (simple job individually) | 09 |
|---|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | III       | Prepare plumbing job as per given drawing (individually)                                                                                        | 06 |
| 4 | III       | Prepare black smithy job involving cutting, bending,<br>drawing/ upsetting operations as per drawing (individually)                             | 06 |
| 5 | IV        | Prepare lap joint/butt joint using arc welding as per given drawing (individually)                                                              | 06 |
| 6 | IV &<br>V | Prepare utility job/ different working joints involving wood<br>work as per given drawing (in group of 4 to 5 students)                         | 12 |
| 7 | VI        | Prepare sheet cutting, bending, edging, end curling, lancing, soldering and riveting operations. (in group of 4 to 5 students)                  | 06 |
|   |           | Total                                                                                                                                           | 48 |

#### 8. SUGGESTED STUDENT ACTIVITIES :

Following is the list of proposed student activities like:

- 1. Prepare work diary based on practical performed in workshop. Work diary consist of job drawing, operations to be perform, required raw materials, tools, equipments, date of performance with teacher signature.
- 2. Prepare journals consist of free hand sketches of tools and equipments in each shop, detail specification and precautions to be observed while using tools and equipment.
- 3. Prepare/Download a specifications of followings:
  - a) Various tools and equipment in various shops.
  - b) Precision equipment in workshop
  - c) Various machineries in workshop
- 4. Undertake a market survey of local dealers for procurement of workshop tools, equipment machineries and raw material.
- 5. Visit any fabrication/wood working/sheet metal workshop and prepare a report.

# 9. SPECIAL INSTRUCTIONAL STRATEGIES (if any) :

# **1.** Demonstration

#### 10. SUGGESTED LEARNING RESOURCES

| S.N. | Title of Book                                                           | Author           | Publication                                                            |
|------|-------------------------------------------------------------------------|------------------|------------------------------------------------------------------------|
| 1.   | Workshop Practice                                                       | Bawa, H.S.       | McGraw Hill Education, Noida;                                          |
|      |                                                                         |                  | ISBN-10: 0070671192                                                    |
|      |                                                                         |                  | ISBN-13: 978-0070671195                                                |
| 2.   | A Textbook of                                                           | Gupta,           | S.Chandand Co. New                                                     |
|      | Manufacturing Process<br>(Workshop Tech.)                               | J.K.;Khurmi,R.S. | DelhiISBN:81-219-3092-8                                                |
| 3.   | Workshop Practice Manual<br>For Engineering Diploma &<br>ITI Students   | Hegde, R.K.      | Sapna Book House, 2012,<br>ISBN:13: 9798128005830                      |
| 4.   | Introduction to Basic<br>Manufacturing Process &<br>Workshop Technology | Singh, Rajender  | New Age International, New<br>Delhi; 2014, ISBN: 978-81-<br>224-3070-7 |

# 11. Major Equipment/ Instrument with Broad Specifications

| S.<br>No. | Equipment Name with Broad Specifications                                                                                                                                                                 | Experiment<br>S.No.     |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 1         | Fire buckets with stand of medium size                                                                                                                                                                   | I, II, III,<br>IV,V, VI |
| 2         | Fire extinguisher A,B and C types                                                                                                                                                                        | I, II, III,<br>IV,V, VI |
| 3         | Wood Turning Lathe Machine, Height of Centre: 200mm, Distance<br>between Centers: 1200mm, Spindle Bore: 20mm with Taper, Range of<br>Speeds: 425 to 2800 with suitable Motor Drive. with all accessories | II                      |
| 4         | Circular Saw Machine, Diameter of saw blade 200 mm, Maximum Depth of Cut 50 mm, Table Size $-350 \times 450$ mm, Table Tilting $-45^{\circ}$                                                             | II                      |
| 5         | Wood working tools- marking and measuring tools, saws, claw<br>hammer, mallet, chisels, plans, squares,                                                                                                  | II                      |
| 6         | Carpentry Vice 200 mm                                                                                                                                                                                    | II                      |
| 7         | Work Benches- size:1800 x 900 x 750 mm                                                                                                                                                                   | III                     |
| 8         | Bench Drilling machine (up to 13 mm drill cap.) with <sup>1</sup> / <sub>2</sub> H.P. Motor                                                                                                              | III                     |

|    | 1000 mm. Height.                                                                                                                                                              |                      |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 9  | Power Saw machine 350 mm mechanical with 1 HP Motor & all Accessories.                                                                                                        | III                  |
| 10 | Bench Grinder 200 mm Grinding Disc diameter 200 mm. with 25 mm. bore 32 mm. with <sup>1</sup> / <sub>2</sub> HP/1HP Motor.                                                    | III                  |
| 11 | Vernier height Gauge 450 mm                                                                                                                                                   | III                  |
| 12 | Surface Plate 600 x 900 mm Grade I                                                                                                                                            | III                  |
| 13 | Angle Plate 450 x 450 mm                                                                                                                                                      | III                  |
| 14 | Welding machine 20 KVA 400A welding current 300A at 50, 100, 200, 250, 300 with std. Accessories and Welding Cable 400 amp. ISI with holder                                   | IV                   |
| 15 | Oxygen and acetylene gas welding and cutting kit with cylinders and regulators.                                                                                               | IV                   |
| 16 | Pipe Bending Machine                                                                                                                                                          | IV                   |
| 17 | Pipe Vice – 100 mm                                                                                                                                                            | IV                   |
| 18 | Pipe Cutter- 50 mm                                                                                                                                                            | IV                   |
| 19 | Bench Vice 100 mm                                                                                                                                                             | II,III,IV,V,VI       |
| 20 | Portable Hammer Drill Machine 0-13 mm<br>A.C. 230 V, 2.5Amp, Pistol type, having different types of bits                                                                      | II, III, IV,V,<br>VI |
| 21 | Sheet Bending Machine                                                                                                                                                         | VI                   |
| 22 | Sheet Cutting Machine                                                                                                                                                         | VI                   |
| 23 | Brazing Equipment                                                                                                                                                             | VI                   |
| 24 | Fitting tools - hammers, chisels, files, hacksaw, surface plate, punch, v block, angle plate, try square, marking block, steel rule, twist drills, reamers, tap set, die set. | III                  |
| 25 | Plumbing tools-pipe vice, pipe bending equipment, pipe wrenches dies.                                                                                                         | IV                   |
| 26 | Gas welding hand tools- welding torch, welding tip, pressure regulator, oxygen and acetylene cylinders, spark lighter                                                         | V                    |
| 27 | Arc welding hand tools- electrode holder, cable connector, cable lugs, chipping hammer, earthing clamp, wire brush.                                                           | V                    |
| 28 | Sheet metal hand tools-snip, shearssheet gauge, straight edge, L square, scriber, divider, trammel, punches, pliers, stakes, groovers, limit set                              | VI                   |

#### 12. E-learning recourses

(Please mention complete URL of the E- recourse CO wise)

- 1. <u>http://www.asnu.com.au</u>
- 2. http://www.abmtools.com/downloads/Woodworking%20Carpentry%20Tools. pdf
- 3. http://www.weldingtechnology.org
- 4. http://www.newagepublishers.com/samplechapter/001469.pdf
- 5. http://www.youtube.com/watch?v=TeBX6cKKHWY
- 6. http://www.youtube.com/watch?v=QHF0sNHnttw&feature=related
- 7. http://www.youtube.com/watch?v=Kv1zo9CAxt4&feature=relmfu
- 8. http://www.piehtoolco.com
- 9. http://sourcing.indiamart.com/engineering/articles/materials-used-hand-tools/
- 10. https://www.youtube.com/watch?v=9\_cnkaAbtCM

# 13. POs and PSOs assignment and its strength of assignment with each CO of the

### Course :

| CO.  | Course Outcome                       | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | PS | PS |
|------|--------------------------------------|---|---|---|---|---|---|---|---|---|----|----|----|
| NO.  |                                      | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | 0  | 0  |
|      |                                      | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 1  | 2  |
|      | Select tools and machinery           | 1 | 2 | 3 | 3 | 1 | - | 1 | 2 | 2 | 2  | 2  | -  |
| CO 1 | according to job                     |   |   |   |   |   |   |   |   |   |    |    |    |
|      | Use hand tools in different shop for | 1 | 2 | 3 | 3 | 1 | - | 1 | 2 | 2 | 2  | -  | 3  |
| CO 2 | performing different operation.      |   |   |   |   |   |   |   |   |   |    |    |    |
|      | Operate equipment and machinery in   | 1 | 2 | 3 | 3 | 1 | - | 1 | 2 | 2 | 2  | 3  | 3  |
| CO 3 | different shops                      |   |   |   |   |   |   |   |   |   |    |    |    |
| CO 4 | Prepare job according to drawing     | 1 | 2 | 3 | 3 | 1 | - | 1 | 2 | 2 | 2  | -  | -  |
| 0.04 |                                      |   |   |   |   |   |   |   |   |   |    |    |    |
| CO 5 | Maintain workshop related tools,     | 1 | 2 | 3 | 3 | 1 | _ | 1 | 2 | 2 | 2  | 3  | -  |
| 05   | equipment and machineries            |   |   |   |   |   |   |   |   |   |    |    |    |

#### **COURSE CURRICULUM DEVELOPMENT COMMITTEE :**

- Sr.Name of the facultyDesignation and InstituteNo.members1D.V.TammewarWorkshop Superitendent
- 2 Dr.U.V.Pise Head of Mechanical Engineering

(Member Secretary PBOS)

(Chairman PBOS)

#### COURSE TITLE BASIC MATHEMATICS

COURSE CODE 6G101

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| CE/ME/EE/ET/IT/CO/AE                              | First Semester            |

#### **1. RATIONALE :**

This course is classified under foundation level courses and intends to teach students basic facts, concepts and principles of mathematics, as a tool to analise engineering problems. Diploma engineers have to solve the problems in engineering.

Basic mathematics is an attempt to initiate the multi-dimensional logical thinking and reasoning capabilities of the students.

#### 2. COMPETENCY :

At the end of studying this course students will be able to "Solve engineering problems by using analytical and systematic approach."

#### **3. COURSE OUTCOMES :**

Students will be able to Apply rules of Logarithms in solving simple engineering problems

- 1. Solve simultaneous equations using concepts of Determinants and Matrices
- 2. Solve simple engineering problems using concepts of Partial Fractions
- 3. Solve simple engineering problems by applying formulae of trigonometry.
- 4. Solve simple engineering problem of function using the different definition of Function
- 5. Solve simple engineering problem of function using the rules of Limits.

| Taaahin       | Sahar   |    | Total Examination Scheme |          |       |             |       |       |
|---------------|---------|----|--------------------------|----------|-------|-------------|-------|-------|
| Teaching      | g Schen | le | Total                    |          | Exan  | mation Sci  | leme  |       |
| (In H         | lours)  |    | Credits                  | Theory I | Marks | Practical 1 | Marks | Total |
|               |         |    | (L+T+P)                  | -        |       |             |       | Marks |
| L             | Т       | Р  | С                        | ESE      | PT    | ESE         | PA    |       |
| 03            | 01      |    | 04                       | 80       | 20    |             |       | 100   |
| Exam Duration |         |    | 03 Hrs.                  | 01 Hr.   |       |             |       |       |

#### 4. TEACHING AND EXAMINATION SCHEME :

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

# GPA

# **5. COURSE DETAILS:**

| Unit                | Major Learning<br>Outcomes                   | Topics and Sub-topics                                                      |
|---------------------|----------------------------------------------|----------------------------------------------------------------------------|
|                     | (in cognitive domain)                        |                                                                            |
| Unit- I<br>Revision | 1a.Torecall/knowthebasicconceptof            | <ul><li>1.1 Logarithms</li><li>1.2 Definition natural and common</li></ul> |
|                     | Logarithms and                               | logarithms.                                                                |
|                     | Determinant of order                         | 1.3 Laws of logarithm.                                                     |
|                     | 2and3                                        | 1.4Definition of Determinant, Order of                                     |
|                     |                                              | Determinant.                                                               |
|                     |                                              | 1.5 Expansion of Determinant of order 2 and                                |
|                     |                                              | 3.<br>1 C D                                                                |
| TT '4 TT            |                                              | 1.6 Properties of Determinant.                                             |
| Unit- II            | 2a.Students will be able                     | 2.1 Cramer's Rule.                                                         |
| Determinant         | to Solve simultaneous                        | (solution of simultaneous equations in                                     |
| And                 | equations using concepts of Determinants and | two and three unknowns)                                                    |
| Matrices            | Matrices                                     | 2.1 Definition of matrix: Type of matrix:                                  |
|                     | Matrices                                     | viz null, row, column, Square,<br>diagonal, scalar, unit, Triangular.      |
|                     |                                              | 2.2 Algebra of matrices –addition,                                         |
|                     |                                              | subtraction and multiplication.                                            |
|                     |                                              | 2.3 Transpose of a matrix.                                                 |
|                     |                                              | 2.4 adjoint of a matrix Relation.                                          |
|                     |                                              | 2.5 Inverse of matrix by adjoint method.                                   |
|                     |                                              | 2.6 Solution of simultaneous equations in                                  |
|                     |                                              | two and three Unknowns using Inverse of                                    |
|                     |                                              | matrix method.                                                             |
| Unit- III           | 3a.Students will be able                     | 3.1 Definition of Partial fraction, proper and                             |
| Doutial Enactions   | to solve simple                              | improper fractions, rational fractions.                                    |
| Partial Fractions   | problems                                     | 3.2 To resolve given rational fraction into                                |
|                     | Using concepts of                            | partial fractions.                                                         |
|                     | Partial Fractions                            | 3.3 Denominator containing non repeated                                    |
|                     |                                              | linear factors.                                                            |
|                     |                                              | 3.4 Denominator containing repeated linear                                 |
|                     |                                              | factors.                                                                   |
|                     |                                              | 3.5 Denominator containing irreducible non-                                |
|                     |                                              | repeated quadratic factors.                                                |
| TT 1. TT 7          |                                              | 3.6 Different types of examples.                                           |
| Unit- IV            | 4a.Students will be able                     | 4.1 Trigonometric ratios of allied, compound                               |
| Trigonometry        | to Solve simple                              | and multiple angles.                                                       |
|                     | problems by applying                         | 4.2 Trigonometric Ratios of allied angles.                                 |
|                     | using concepts of                            | 4.3 Trigonometric Ratios of compound                                       |
|                     |                                              | angles.                                                                    |

|                     | trigonometry.                                                                                    | <ul> <li>4.4 Trigonometric Ratios of multiple angle<br/>Product, sum and difference formulae.</li> <li>4.5 Sub-multiple angles.</li> <li>4.6 Definition of inverse trigonometric,<br/>ratios.</li> <li>4.7 Principal value of inverse trigonometric<br/>ratios. Relation between inverse</li> </ul>                                                                        |
|---------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                                                                  | trigonometric ratios.<br>4.8 Examples on inverse circular functions.                                                                                                                                                                                                                                                                                                       |
| Unit -V<br>Function | 5a.Students will be able<br>to Solve the problem of<br>function using the<br>concept of Function | <ul> <li>5.1 Cartesian products of sets.</li> <li>5.2 Definition of relation, definition of function, real value. Function, domain, co-domain of a function.</li> <li>5.3 Types of Functions.</li> <li>5.4 Value of the function at given point .</li> <li>5.5 Composite function.</li> <li>5.6 Different types of examples on functions <ul> <li>.</li> </ul> </li> </ul> |
| Unit -VI<br>Limits  | 6a. Students will be able<br>to Solve the problem of<br>function using the<br>concept of Limit   | <ul> <li>6.1Definition and concept of limit, limits of algebraic functions.</li> <li>6.2 Limits of trigonometric functions.</li> <li>6.3 Limits of exponential functions.</li> <li>6.4 Limits of logarithmic functions.</li> </ul>                                                                                                                                         |

#### 6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY):

| Unit | Unit Title        | Teaching | Distribution of Theory Marks |       |       |       |
|------|-------------------|----------|------------------------------|-------|-------|-------|
| No.  |                   | Hours    | R                            | U     | Α     | Total |
|      |                   |          | Level                        | Level | Level | Marks |
| 1    | Revision          | 02       | 0                            | 0     | 0     | 0     |
| 2    | Determinants and  | 12       | 04                           | 08    | 12    | 24    |
|      | Matrices          |          |                              |       |       |       |
| 3    | Partial Fractions | 06       | -                            | 04    | 04    | 08    |
| 4    | Trigonometry      | 14       | 04                           | 08    | 12    | 24    |
| 5    | Function          | 04       | 02                           | 02    | 04    | 08    |
| 6    | Limits            | 10       | 04                           | 04    | 08    | 16    |
|      | TOTAL             | 48       | 14                           | 26    | 40    | 80    |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

#### 7. SUGGESTED EXERCISES/PRACTICAL/TUTORIAL :

- 1) The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills so that students are able to acquire the competencies.
- 2) Form a batch of 20 students and at least 10 problems should be given to get necessary exercise.

| Sr. | Title/Topic       | Exercises/Tutorial                                                      | Approx. |
|-----|-------------------|-------------------------------------------------------------------------|---------|
| No. |                   |                                                                         | hours   |
| 1   | Determinants and  | Solving problems on cramer's rule                                       | 02      |
|     | Matrices          | Examples on Matrix<br>Addition/Subtraction and Product Co-              | 02      |
|     |                   | factors, Ad joint and Inverse of Matrix                                 |         |
|     |                   | Solution of Simultaneous Equation using 3X3 Matrix and its Applications | 02      |
| 2   | Partial Fractions | Examples related Definition and cases                                   | 02      |
| 3   | Trigonometry      | Practice Examples: Allied & Compound                                    |         |
|     |                   | Angles. Examples related inverse trigonometric ratios                   | 04      |
| 4   | Function          | Examples related Definition and Rules.                                  | 02      |
| 5   | Limits            | Examples related to different types of function.                        | 02      |

#### 8. SUGGESTED STUDENT ACTIVITIES :

---

# 9. SPECIAL INSTRUCTIONAL STRATEGIES (if any) :

- 1 Chalk-board method.
- 2 Projector method.
- 3 Tutorial method.

#### **10. SUGGESTED LEARNING RESOURCES :**

| Sr. | Title of Book                                       | Author         | Publication                          |
|-----|-----------------------------------------------------|----------------|--------------------------------------|
| No. |                                                     |                |                                      |
| 1   | Mathematics for polytechnic students for first year | S.P.Deshpande  | Pune vidhyarti gruh<br>prakshan Pune |
| 2   | Mathematics for polytechnic students for first year | G.V.Kumbhojkar | Phadke prakashan<br>Kholapur         |
| 3   | Mathematics for polytechnics                        | TTTI Bhopal    | TTTI Bhopal                          |

# 11. Major Equipment/ Instrument with Broad Specifications :

| Sr.NO. | Name of the Equipment | Specification |
|--------|-----------------------|---------------|
|        | NA                    |               |

#### 12. Software/Learning Websites :

#### 13. POs and PSOs assignment and its strength of assignment with each CO of the Course :

| CO.<br>NO. | Course Outcome                                                                                             | P01 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 | PS01 | PSO2 | PSO3 |
|------------|------------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| CO1        | To able the basic concept of<br>Logarithms and Determinant of<br>order 2 and 3                             | 1   | 1   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    |
| CO2        | Students will be able to Solve<br>simultaneous equations using<br>concepts of Determinants and<br>Matrices | 3   | 1   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    |
| CO3        | Students will be able to solve<br>simple problems Using concepts of<br>Partial Fractions                   | 1   | 1   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    |
| CO4        | Students will be able to Solve<br>simple problems by applying using<br>concepts of trigonometry.           | 3   | 2   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    | -    |
| CO5        | Students will be able to Solve the<br>problem of function using the<br>concept of Function                 | 1   | 1   | -   | -   | -   | -   | -   | 1   | 1   | -    | -    | -    | -    |
| CO6        | Students will be able to Solve the<br>problem of function using the<br>concept of Limits                   | 1   | 3   | -   | -   | -   | -   | -   | _   | _   | -    | -    | -    | -    |

#### **COURSE CURRICULUM DEVELOPMENT COMMITTEE :**

| Sr.<br>No | Name of the faculty member | Designation and Institute<br>Co-coordinator<br>science and Humanities |
|-----------|----------------------------|-----------------------------------------------------------------------|
| 1         | Mr. M.A. Ali               | Lecturer in Mathematics, Government Polytechnic Aurangabad            |
| 2         | Mr. R.B. Borulkar          | Lecturer in Mathematics, Government Polytechnic Aurangabad            |
| 3         | Mrs. H.H. Bhumkar          | Lecturer in Mathematics, Government Polytechnic Aurangabad            |
|           |                            |                                                                       |

Member Secretary PBOS Chairman PBOS

#### COURSE TITLE ENGINEERING CHEMISTRY

GPA

COURSE CODE 6G104

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| ME/CE/EE//ET/CO/IT/AE                             | First/ Second Semester    |

#### 1. RATIONALE :

Chemistry is a basic science subject which is essential to all engineering courses. It gives knowledge of engineering materials, their properties, related applications and selection of materials for specific engineering applications/work/job.

Due to technological progress, there are hazardous effects of chemicals, waste water and sewage water on environment & human life. The core knowledge of environmental effects will bring awareness; generate curiosity in students about the precautions & preventions to be taken to carry out further development resultantly to reduce the ill effects.

#### 2. COMPETENCY :

At the end of studying this course students will be able to

"Apply basic knowledge and principles of chemistry to solve different industrial problems."

#### **3. TEACHING AND EXAMINATION SCHEME :**

| Teachin | g Sc | heme    | Total              | Examination Scheme              |       |      |             |     |             |
|---------|------|---------|--------------------|---------------------------------|-------|------|-------------|-----|-------------|
| (In I   | Hour | s)      | Credits<br>(L+T+P) | Theory Marks Practical<br>Marks |       |      | Total Marks |     |             |
| L       | Т    | Р       | С                  | ESE                             | РТ    | ESE  | PA          | ESE | TOTAL MARKS |
| 3       | -    | 2       | 5                  | 80~                             | 20~   | 25@  | -           | 25  | 150         |
| Exa     | mina | tion Du | ration             | 2Hrs                            | 1/2Hr | 2Hrs |             |     |             |

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

#### 4. COURSE OUTCOMES :

After providing classroom teaching and laboratory experiences related to this course, students will be able to

- 1. Draw the orbital configuration of different elements.
- 2. Represent the formation of molecules schematically.
- 3. Compare and use different types of cells.
- 4. Identify the properties of metals & alloys related to engineering applications.

- 5. Identify the properties of nonmetallic materials, related to engineering applications.
- 6. Select a proper material for specific purpose.
- 7. Select and use the lubricants at proper/ specific conditions of machines.

### 5. COURSE DETAILS :

| Unit              | Major Learning<br>Outcomes | Topics and Sub-topics                                   |
|-------------------|----------------------------|---------------------------------------------------------|
| UNIT-I            | 1a.Identification of       | 1.1 Atomic no, atomic mass no. numerical                |
| Electronic Theory | structure and nature of    | problems on it, orbit & orbitals.                       |
| Of Valency &      | atom, element and          | 1.2 Electronic configuration, electronic                |
| Molecule          | molecule.                  | configuration of first 30 elements.                     |
| Formation         |                            | 1.3 Molecule formation: Valency, types of               |
|                   |                            | valency, electrovalency and covalency                   |
|                   |                            | with suitable examples. Study of                        |
|                   |                            | Formation of Electrovalent compounds                    |
|                   |                            | e.g. NaCl, CaCl <sub>2</sub> & MgCl <sub>2</sub> and    |
|                   |                            | formation of Covalent Compounds                         |
|                   |                            | examples $H_2O$ , $Cl_2$ , $CO_2$ , $N_2$               |
| UNIT-II           | 2a.Verify Principle,       | 2.1 Arrhenius Theory of Ionization, Degree              |
| Electrochemistry  | construction, working      | of ionization.                                          |
| Lieculochennisuly | and applications of        | 2.2 Basic concepts of Conductors,                       |
|                   | different cells.           | Insulators, Dielectrics, Electrolyte, Non               |
|                   |                            | Electrolyte                                             |
|                   |                            | 2.3 Electrolysis, Electrolytic Cell,                    |
|                   |                            | Electrodes.                                             |
|                   |                            | 2.4 Electrolysis of CuSO <sub>4</sub> Solution by using |
|                   |                            | Cu Electrode & Platinum Electrode                       |
|                   |                            | 2.5 Faraday's first law of Electrolysis &               |
|                   |                            | numerical problems on it                                |
|                   |                            | Application of Electrolysis such as                     |
|                   |                            | Electroplating.                                         |
|                   |                            | 2.6 Electrochemical Cells & Batteries                   |
|                   |                            | Types of cell Primary & secondary cell                  |
|                   |                            | construction And Working of Dry                         |
|                   |                            | cell & Lead – Acid                                      |
|                   |                            | Storage.                                                |

| UNIT- III         | 3a.Identify different  | 2.1 Definition of Motellurgy Minerel Ore       |
|-------------------|------------------------|------------------------------------------------|
| UN11- 111         | •                      | 3.1 Definition of Metallurgy, Mineral, Ore,    |
| Metals and Alloys | mechanical properties  | Gangue, Flux & Slag, Occurrence of             |
|                   | and extraction methods | Metals.                                        |
|                   | -                      | 3.2 Mechanical Properties of metals such as    |
|                   | Correlate properties,  | hardness, Toughness, ductility,                |
|                   | composition and        | malleability, tensile strength.                |
|                   | applications of alloys | 3.3 Stages of Extraction of Metals             |
|                   | with metal.            | from its Ores in detail i.e. its flow sheet    |
|                   |                        | Crushing, Concentration, methods of            |
|                   |                        | concentration (physical and chemical).         |
|                   |                        | 3.4 Reduction of iron in blast furnace with    |
|                   |                        | chemical reactions, Reactions in zone of       |
|                   |                        | reduction.                                     |
|                   |                        | Alloys                                         |
|                   |                        | 3.5 Definition of Alloy, Purposes of Making    |
|                   |                        | alloy.                                         |
|                   |                        | 3.6 Methods of Preparation of alloy such as    |
|                   |                        | fusion method & compression method             |
|                   |                        | 3.7 Classification of Alloys, Ferrous alloys & |
|                   |                        | Non Ferrous alloys, their examples.            |
|                   |                        | 3.8 Composition, Properties & Applications     |
|                   |                        | of some common alloys such as Alnico,          |
|                   |                        | Duralumin, Wood's Metal                        |
| UNIT-IV           | 4a. Classify corrosion | 4.1 Definition of corrosion                    |
| Corrosion of      | from action of         | 4.2 Atmospheric corrosion or dry Corrosion,    |
| Metals And its    | surrounding            | corrosion due to oxygen, different types of    |
| Application       | environment and its    | film formation.                                |
| Application       |                        | 4.3 Electrochemical Corrosion Hydrogen         |
|                   | protection methods.    | evolution mechanism.                           |
|                   |                        |                                                |
|                   |                        | 4.4 Appling protective Coatings like metal     |
|                   | 5. D                   | coating by galvanising, tinning                |
| UNIT-V            | 5a. Recognize ill      | 5.1 Hard water & soft water, types of          |
| Water             | effect of hard water   | hardness, causes of hardness                   |
|                   | and methods for        | 5.2 Effects of hard water in different         |
|                   | purification of water. | industries (such as paper, sugar, dying        |
|                   |                        | and textile industries) and domestic           |
|                   |                        | purposes.                                      |
|                   |                        | 5.3 Softening of hard water by Permutit        |
|                   |                        | process and ion exchange process,.             |
|                   |                        | 5.4 Potable water & its condition for pot-     |
|                   |                        | ability. Different methods of                  |
|                   |                        | purification of water for drinking             |
|                   |                        | purposes chlorination and ozonation            |
|                   |                        | 5.5 pH – value of water its applications       |

|             |          |                          | Numericals on pH values.                       |
|-------------|----------|--------------------------|------------------------------------------------|
| UNIT-VI     |          | 6a. Identification of    | -                                              |
|             | Metallic | types , preparation,     | Formation of Plastic by Addition               |
| Materials   |          | properties and           | Polymerisation with examples                   |
| 10100110115 |          | applications of plastic, | Polyethylene & PVC.                            |
|             |          |                          | 6.2 Formation of Plastic by Condensation       |
|             |          | insulating material.     | Polymerisation with suitable example as        |
|             |          | insulating material      | Nylon 6, 6; Bakelite plastic.                  |
|             |          |                          | 6.3 Types of Plastics,                         |
|             |          |                          | Thermo softening & Thermosetting Plastic       |
|             |          |                          | & difference between them.                     |
|             |          |                          | 6.4. Engineering properties of plastic and its |
|             |          |                          | related uses.                                  |
|             |          |                          | RUBBER                                         |
|             |          |                          | 6.5 Natural rubber its extraction from latex,  |
|             |          |                          | drawbacks of natural rubber. Synthetic         |
|             |          |                          | Rubber its examples                            |
|             |          |                          | 6.6 Vulcanisation of rubber with chemical      |
|             |          |                          | reaction.                                      |
|             |          |                          | 6.7 Properties of rubber such as elasticity,   |
|             |          |                          | tack, resistant to abrasion, rebound           |
|             |          |                          | capacity.                                      |
|             |          |                          | 6.8 Engineering Applications of rubber         |
|             |          |                          | based on its properties.                       |
|             |          |                          | 6.9 Thermal insulating materials               |
|             |          |                          | Definition & characteristics of ideal          |
|             |          |                          | thermal insulator.                             |
|             |          |                          | Glass wool preparation, properties &           |
|             |          |                          | applications.                                  |
|             |          |                          | Thermocole properties and its                  |
|             |          |                          | applications.                                  |

| Unit-VII   | 7a. Select proper       | 7.1 Definition of lubricant and               |
|------------|-------------------------|-----------------------------------------------|
| Lubricants | lubricant for different | Lubrication.                                  |
|            | types of machineries.   | 7.2 Functions of lubricants.                  |
|            |                         | 7.3 Classification of lubricants with         |
|            |                         | examples,                                     |
|            |                         | 7.4 Mechanism of Lubrication by Fluid         |
|            |                         | Film, Boundary & Extreme Pressure,            |
|            |                         | 7.5 Physical Characteristics of Lubricants    |
|            |                         | Such as Viscosity, Viscosity Index, Oiliness, |
|            |                         | Volatility, Flash & Fire Point, Cloud & Pour  |
|            |                         | Point.                                        |
|            |                         | 7.6 Selection of proper Lubricants for        |
|            |                         | Various types of machines.                    |

#### 6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY) :

| Unit | Unit Title                   | Teaching | Distribution of Theory Marks |       |       |       |  |
|------|------------------------------|----------|------------------------------|-------|-------|-------|--|
| No.  |                              | Hours    | R                            | U     | Α     | Total |  |
|      |                              |          | Level                        | Level | Level | Marks |  |
| Ι    | Electronic Theory of Valency | 8        | 2                            | 6     | 4     | 12    |  |
|      | and Molecular Formatin       |          |                              |       |       |       |  |
| II   | Electrochemistry             | 6        | 2                            | 8     | 2     | 12    |  |
| III  | Metals and Alloys            | 8        | 2                            | 8     | 4     | 14    |  |
| IV   | Corrosion of Metals and it's | 6        | 2                            | 4     | 2     | 8     |  |
|      | Applications                 |          |                              |       |       |       |  |
| V    | Water                        | 7        | 2                            | 2     | 6     | 10    |  |
| VI   | Non Metallic Materials       | 7        | 4                            | 8     | 4     | 16    |  |
| VII  | VII Lubricants               |          | 2                            | 4     | 2     | 8     |  |
|      | Total                        | 48       | 16                           | 40    | 24    | 80    |  |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

#### 7. SUGGESTED EXERCISES/PRACTICALS :

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and psychomotor skills (**Outcomes in cognitive, psychomotor and affective domain**) so that students are able to acquire the competencies.

| GPA |  |
|-----|--|
|     |  |
|     |  |
|     |  |
|     |  |

| Sr.<br>No. | Unit<br>No.                                                                         | Practical Exercises                                                                                                                            | Approx.<br>Hrs.<br>required |  |  |  |  |
|------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|--|--|--|--|
| 1          | 1                                                                                   | Write Orbital electronic configuration of different elements (First 30 elements)                                                               | 2                           |  |  |  |  |
| 2          | 2                                                                                   | Verify Faraday's first Law of electrolysis.                                                                                                    | 2                           |  |  |  |  |
| 3          | 7                                                                                   | Find the normality & strength in grams per liter of the given solution (NaOH) with the help of standard hydrochloric acid.                     | 2                           |  |  |  |  |
| 4          | 5                                                                                   | Determine pH value of given solutions, water samples, by using, universal indicator and pH meter.                                              | 2                           |  |  |  |  |
| 5          | 7                                                                                   | Determine the normality & strength of given hydrochloric acid solution<br>by titrating it against standard potassium hydroxide solution.       | 2                           |  |  |  |  |
| 6          | 3                                                                                   | Determine percentage of iron from steel by titration method.                                                                                   | 2                           |  |  |  |  |
| 7          | 5                                                                                   | Determine the hardness of potable water and boiler feeding water.                                                                              | 2                           |  |  |  |  |
| 8          | 5                                                                                   | Determine the chloride content potable water and boiler feeding water.                                                                         | 2                           |  |  |  |  |
| 9          | 6                                                                                   | Prepare phenol formaldehyde resin.                                                                                                             | 2                           |  |  |  |  |
| 10         | 7                                                                                   | Determine the acid value of oil sample by neutralization method.                                                                               | 2                           |  |  |  |  |
| 11         | 2                                                                                   | Qualitative analysis of given salt solutions, i.e. to determine one acidic                                                                     | For each                    |  |  |  |  |
|            |                                                                                     | and one basic radical from given salt solution. (At least 05 salt                                                                              | salt                        |  |  |  |  |
|            |                                                                                     | solutions.)                                                                                                                                    | solution 2                  |  |  |  |  |
| N          | licro P                                                                             | roject ( Any one of following will be opted by a group of 5-6 stud                                                                             | ents)                       |  |  |  |  |
| Sr.<br>No. | Unit<br>No.                                                                         | Practical Exercises                                                                                                                            |                             |  |  |  |  |
| 1          | 1 1 Prepare power point presentation to show/demonstrate covalent bond, ionic bond. |                                                                                                                                                |                             |  |  |  |  |
| 2          | 4                                                                                   | Effect of acid or alkali on rate of corrosion for different metals.                                                                            |                             |  |  |  |  |
| 3          | 5                                                                                   | Study of hard and soft water of different samples of water                                                                                     |                             |  |  |  |  |
| 4          | 2                                                                                   | Study of mechanism and working of different batteries.                                                                                         |                             |  |  |  |  |
| 5          | 2                                                                                   | Preparation of small scale batteries/ Galvanic cells. Collect chemicals and material from lab and household and prepare working model of cell. |                             |  |  |  |  |
| 6          | 6                                                                                   |                                                                                                                                                |                             |  |  |  |  |

### ( Any TEN from following )

#### 8. SUGGESTED STUDENT ACTIVITIES

- a. Verify the properties of different types of compounds used in day to day life.
- b. Differentiate properties and uses of different metals.
- c. Differentiate composition, properties and application of different alloys.
- d. Co-relate the effect of acidic environment with neutral environment.
- e. Library survey regarding engineering chemistry topics regarding curriculum.
- f. Animated Power point presentation containing current research development related to topics mentioned in curriculum.

#### 9. SPECIAL INSTRUCTIONAL STRATEGIES

- a. Search various sites to teach various topics/sub topics.
- b. Instead of the traditional lecture method, use different types of teaching methods such as improved lecture method, question answer method, laboratory method to attained specific outcome.
- c. Some topics are relatively simpler in nature is to be given to the students for selflearning by seminar or by classroom presentations
- d. Teachers provide theme to create multiple choice questions.
- e. Provide super visionary assistance for completion of micro-projects.

#### **10. SUGGESTED LEARNING RESOURCES**

| Sr.No. | Title of Book            | Author        | Publication              |
|--------|--------------------------|---------------|--------------------------|
| 1      | Engineering Chemistry    | Jain & Jain   | Dhanpat Rai and Sons Co. |
|        |                          |               | ISBN 9789352160006       |
| 2      | Engineering Chemistry    | S. S. Dara    | S. Chand Publication     |
|        |                          |               | ISBN 8121903599          |
| 3      | Chemistry of Engineering | S.N. Narkhede | Nirali Prakashan         |
|        | Materials                |               |                          |

#### 11. MAJOR EQUIPMENTS/ INSTRUMENTS WITH BROAD SPECIFICATIONS

| Sr. | Name of the Equipment     | Specification                                         |
|-----|---------------------------|-------------------------------------------------------|
| No. |                           |                                                       |
| 1   | pH meter                  | Digital ,Range 0 to 14 with Sensitive Glass electrode |
| 2   | Distilled water plant     | S.S. plant with 15 lit capacity with 2Kv heating coil |
| 3   | Kipps's Apparatus         | Airtight three section apparatus                      |
| 4   | Electrolytic cell for     | Battery 24V and 5 Ampere , Rheostat 1000 Ohm,         |
|     | verification of Faraday's | Wire, Ammeter 0 to 5 Ampere, Copper plate 3" x 6      |
|     | first law                 | " inch                                                |

#### **12. E-LEARNING RESOURCES**

(Please mention complete URL of the E- resource CO wise)

| Sr. | Web Address                 |
|-----|-----------------------------|
| No. |                             |
| 1   | http://www.webelements.com  |
| 2   | http://www.chemtutor.com    |
| 3   | http://www.chem1.com        |
| 4   | https://phet.colorado.edu   |
| 5   | www.visionlearning.com      |
| 6   | www.onlinelibrary.wiley.com |
| 7   | www.rsc.org                 |
| 8   | www.chemcollective.org      |

# 13. POS AND PSOS ASSIGNMENT AND ITS STRENGTH OF ASSIGNMENT WITH EACH CO OF THE COURSE:

GPA

| CO.<br>No. | Course Outcome                                                                               | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PSO1 | PSO2 |
|------------|----------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | Draw the orbital configuration of different elements.                                        | 3   | 3   | -   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2        | Represent the formation of molecules schematically.                                          | 3   | 2   | 2   | 1   | _   | -   | _   | -   | _   | _    | _    | -    |
| CO3        | Compare and use different types of cells.                                                    | 3   | 3   | -   | 1   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO4        | Identify the properties of metals & alloys related to engineering applications.              | 3   | 3   | 2   | 1   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5        | Identify the properties of<br>nonmetallic materials, related<br>to engineering applications. | 3   | 3   | 1   | 2   | -   | 2   | -   | -   | -   | -    | -    | -    |
| CO6        | Select a proper material for specific purpose.                                               | 2   | 2   | 2   | 1   | 1   | 1   | -   | -   | -   | -    | -    | -    |
| CO7        | Select and use the lubricants at proper/ specific conditions of machines.                    | 2   | 2   | 2   | 1   | 1   | 1   | -   | -   | -   | -    | -    | -    |

#### **Course Curriculum Design Committee :**

| Sr.<br>No | Name of the faculty member | Designation and Institute                                 |
|-----------|----------------------------|-----------------------------------------------------------|
| 1         | Dr. H.R. Shaikh            | Lecturer in Chemistry, Government Polytechnic, Aurangabad |
| 2         | Dr. Devdatta V. Saraf      | Lecturer in Chemistry, Government Polytechnic, Aurangabad |
| 3         | Mrs. R.A. Nemade           | Lecturer in Chemistry, Government Polytechnic, Aurangabad |
| 4         | Mr. P.K. Shewalkar         | Lecturer in Chemistry, Government Polytechnic, Jalna      |

Member Secretary PBOS

**Chairman PBOS** 

Co-coordinator science and Humanities

| COURSE TITLE    | ENGINEERING GRAPHICS. |  |
|-----------------|-----------------------|--|
| COURSE CODE     | 6G201                 |  |
| DIPLOMA PROGRAM | SEMESTER              |  |
| ME, C           | First                 |  |

#### **1. RATIONALE:**

Engineering Drawing is the language of engineers and technicians. Always the engineers come across different types of drawings. It is therefore very important to understand the fundamentals and basic concepts involved in drawing.

It describes the scientific facts, concepts, principles and techniques of drawings in any engineering field to express the ideas, conveying the instructions, which are used to carry out jobs in engineering fields. The course aim for building foundation for the further course in drawing and other allied subjects.

It covers knowledge & application of drawing instruments & also familiarizes the learner about Bureau of Indian standards. The curriculum aims at developing the ability to draw and read various drawings, curves and projections.

#### 2. COMPETENCY:

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies:

"Prepare engineering drawings manually with given geometrical dimensions using prevailing drawing standards and drafting instruments."

"Draw orthographic views and isometric views."

#### **3. TEACHING AND EXAMINATION SCHEME:**

| Teaching Scheme |        |   | Total   |              |        |          |    |       |  |       |   |       |
|-----------------|--------|---|---------|--------------|--------|----------|----|-------|--|-------|---|-------|
| (In             | Hours) |   | Credits | Theory Marks |        | Practica | al | Total |  |       |   |       |
|                 |        |   | (L+T+P) |              |        | Mar      |    |       |  | Marks | 5 | Marks |
| L               | Т      | Р | C       | ESE          | PT     | ESE (PR) | PA |       |  |       |   |       |
| 2               |        | 2 | 4       |              |        | 50@      | 50 | 100   |  |       |   |       |
| Exam duration   |        |   |         |              | 02 hrs |          |    |       |  |       |   |       |

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

### 4. COURSE OUTCOMEs (COs):

- 1. Draw geometrical figures and scales.
- 2. Drawing of various engineering curves.
- 3. Draw orthographic views of given component.
- 4. Draw isometric view of given component.
- 5. Use various drawing codes, conventions and symbols as per IS SP-46 in engineering drawing.

# **5. COURSE DETAILS :**

| Unit                                     | Major Learning Outcomes<br>(in cognitive domain)                                                                                                                                                                                                                                          | Topics and Sub-topics<br>(Containing POs and PSOs<br>assignment in each Sub-topic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – I<br>Introduction                 | <ol> <li>Use drawing equipments<br/>and instrumentseffectively.</li> <li>Draw and prepare simple<br/>drawings.</li> <li>Follow andapply standard<br/>practice as per<br/>bureau of I.S. forplanning<br/>andlayout.</li> <li>Chooseappropriate scale<br/>factor for thedrawing.</li> </ol> | <ul> <li>1.1 Drawing Instruments and their uses</li> <li>1.2 Letters and numbers (single stroke vertical) for main title, sub-title and normal use.</li> <li>1.3 Different types of lines, Convention of lines and their applications.</li> <li>1.4 Scale (reduced, enlarged &amp; full size), Plain scale and Diagonal scale.</li> <li>1.5 Sheet sizes and layout, Geometrical Constructions.</li> <li>1.6 Dimensioning, its methods, parallel and chain dimensioning, radius and diameter dimensioning, leader and itsuse, dimension with text.</li> </ul> |
| Unit – II<br>Simple Drawing<br>Practices | <ol> <li>Select line types and<br/>divide given line, circle into<br/>equal number of parts.</li> <li>Draw different regular<br/>polygons and circle.</li> </ol>                                                                                                                          | <ul> <li>2.1 Drawing of different circles with<br/>thin, thick, center line use, dividing<br/>circle into number of equal parts,<br/>dividing line into equal parts.</li> <li>2.2 Drawing pentagon, hexagon and<br/>rhombus, drawing correct<br/>arrows to dimension lines, drawing<br/>tangent to circle from given point</li> </ul>                                                                                                                                                                                                                        |
| Unit – III<br>Engineering<br>Curves      | <ol> <li>Drawengineeringcurves</li> <li>withproficiency andspeed as</li> <li>pergivendimensions.</li> <li>Draw curves with uniform</li> <li>thickness and darkness,</li> <li>dimensioning as per IS.</li> </ol>                                                                           | <ul> <li>3.1 To draw ellipse by –</li> <li>Arcs of circle method</li> <li>Concentric circle method</li> <li>Oblong method</li> <li>3.2 To draw parabola by –</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                      |

| Unit – IV<br>Orthographic<br>Projections | 1 Draw the orthographic<br>views of object.<br>2 Interpret given<br>orthographic views<br>and imagine the actual shape<br>of the component. | <ul> <li>Directrix focus method</li> <li>Rectangle method</li> <li>3.3 To draw hyperbola by –</li> <li>Transverse axis &amp; focus method.</li> <li>Passing through a given point. (Rectangular hyperbola)</li> <li>3.4 To draw involute of square, Pentagon, hexagon and circle.</li> <li>3.5 To draw cycloid, epicycloid, hypocycloid.</li> <li>4.1 Converting pictorial view into Orthographic views. (pictorial view of components with holes, cylinders, ribs, plates, slots)</li> <li>4.2 Sectional orthographic Projection of simple objects. (Use First angle method of Device of the section of the sectio</li></ul> |
|------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – V                                 | 1 Draw isometric view of                                                                                                                    | <ul><li>(Use First angle method of Projection).</li><li>5.1 Isometric projection of simple</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Isometric<br>Projections                 | given object.<br>2 Draw isometric scale.                                                                                                    | <ul><li>5.1 Isometric projection of shiple objects</li><li>5.2 Isometric projection of objects having circular holes, slots on sloping surface.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

### 6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS : (End semester examination)

| Unit | Unit Title               | Teaching<br>Hours | Distribution of practi<br>examination marks |            |            |                |
|------|--------------------------|-------------------|---------------------------------------------|------------|------------|----------------|
|      |                          |                   | R<br>Level                                  | U<br>Level | A<br>Level | Total<br>Marks |
| Ι    | Introduction             | 4                 | 2                                           | 2          | 2          | 6              |
| II   | Simple Drawing Practices | 4                 | 2                                           | 2          | 2          | 6              |
| III  | Engineering Curves       | 8                 | 4                                           | 4          | 6          | 14             |
| IV   | Orthographic Projections | 8                 | 2                                           | 4          | 8          | 14             |
| V    | Isometric Projections    | 8                 | 2                                           | 4          | 4          | 10             |
|      | Total                    | 32                | 12                                          | 16         | 22         | 50             |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels

## 7. LIST OF EXERCISES/PRACTICALS :

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/ programme outcomes.

A3 size sketch book should be used by the students. It is necessary to draw all the sheet problems in sketch book first and then redrawn on the sheets

| S. No. | Unit<br>Number | Practical Exercises                                          | Hrs.     |
|--------|----------------|--------------------------------------------------------------|----------|
|        |                |                                                              | required |
| 1      | Ι              | 1. Drawing of lines of different types,                      | 2        |
|        |                | lettering and numbers.                                       |          |
|        |                | 2. Drawing of plain and diagonal scale.                      | 2        |
|        |                | 3. Redraw any 2D drawing with circles, slots                 |          |
|        |                | and curves. Show dimensions on it.                           | 2        |
|        |                | (Drawing on sketchbook.)                                     |          |
| 2      | II             | 1. Drawing of regular pentagon, hexagon with                 |          |
|        |                | standard procedure.Measure internal and                      |          |
|        |                | external angles.                                             | 2        |
|        |                | 2. Divide line, circle, and angles in equal number of parts. |          |
|        |                | (Drawing on sketchbook.)                                     |          |
| 2      | III            | Sheet 1: Drawing of engineering curves.                      |          |
| 2      | 111            | ( 3 problems) each on ellipse, parabola and                  | 4        |
|        |                | hyperbola.                                                   | 4        |
|        |                |                                                              | 4        |
|        |                | <b>Sheet 2:</b> Drawing of Engineering curves.               | 4        |
|        |                | (3 problems) each on scale, involute and                     |          |
| 2      | TT 7           | cycloid.)                                                    | 4        |
| 3      | IV             | Drawing of Orthographic views from                           | 4        |
|        |                | given pictorial view. (Minimum 2 objects                     |          |
|        |                | onsketchbook)                                                |          |
|        |                | Sheet 3: Drawing orthographic views from                     | 4        |
|        |                | pictorial view. (2 objects)                                  |          |
|        |                | Use of first angle method only                               |          |
| 4      | V              | Drawing of Isometric views of simple                         | 4        |
|        |                | Objects.                                                     |          |
|        |                | (Minimum 2 objects on sketch book).                          |          |
|        |                | Sheet 4: Drawing of Isometric views of simple                | 4        |
|        |                | objects (any 2 objects).                                     |          |
|        |                | Total                                                        | 32       |

#### Notes:

a: Use one side of sheet.

b: Theory & practice should be in first angle projections and IS codes should be

followed wherever applicable.

c: The dimensions of line, distances, angle, side of polygon, diameter, etc. may be different for different batches.

d: The sketchbook has to contain data of all problems, solutions of all problems and student activities performed. Students activities are compulsory to be performed.

e: A hand out containing applicable standards from IS codes including title block as per IS standard should be given to each student by concerned teacher.

f: For ESE Practical examination, students are to be assessed for competencies achieved. Students are to be given data for practical ESE to prepare drawings.

g: At the end of term practical examination of 50 marks of 2 Hours duration is compulsory to all students. External and Internal Examiners should set and assess the Question paper jointly as per following guidelines

- Engineering curves and geometric construction (three problems) 24 marks
- Simple Orthographic projection (One Problem) 16 marks
- Isometric projection with slots and holes (One Problem) 10 marks

## 8. LIST OF STUDENT ACTIVITIES :

### Activities

- 1 Sketch the combinations of set squares to draw angles in step of 15 degrees.  $(15^{\circ}, 30^{\circ}, 45^{\circ}, 60^{\circ}, 75^{\circ}, 90^{\circ}, 105^{\circ}, 120^{\circ}, 135^{\circ}, 150^{\circ}, 165^{\circ}, 180^{\circ}).$
- 2 List the shapes you are observing around you in real life with place/item. (For ellipse, parabola and hyperbola).
- 3 Draw free hand isometric and orthographic views of any components
- 4 Observe and draw the locus/path of a point on circumference of a rolling wheel.
- 5 Prepare cuttings of circle and polygons using cardboard/drawing sheet.

## 9. SPECIAL INSTRUCTIONAL STRATEGIES :

| Sr. no. | Unit | Unit name                | Strategy                         |
|---------|------|--------------------------|----------------------------------|
|         | no   |                          |                                  |
| 1       | Ι    | Introduction             | Conventional black board method, |
|         |      |                          | Use of models.                   |
|         |      |                          | Use of software.                 |
| 2       | II   | Simple Drawing Practices | Conventional black board method, |
|         |      |                          | Use of models.                   |
| 3       | III  | Engineering Curves       | Planes made of sheet, cardboard. |
| 4       | IV   | Orthographic             | Models, Use of software.         |
|         |      | Projections              |                                  |
| 5       | V    | Isometric Projections    | Modelsand cut section.           |

#### **10. LEARNING RESOURCES:**

| S.N. | Title of Book                                | Author and Publication                       |
|------|----------------------------------------------|----------------------------------------------|
| 1    | Elementary Engineering Drawing               | N.D.Bhatt, Charotar Publishing House         |
| 2    | Engineering Drawing                          | Mali, Chaudhari, Vrinda Publication          |
| 3    | Engineering Drawing                          | SidheswarShastri , Tata McGraw Hill          |
| 4    | Engineering Graphics                         | Arunodaykumar, Techmax<br>publications, Pune |
| 5    | Engineering Drawing for schools and colleges | IS CODE SP- 46                               |

#### 11. LIST OF MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS:

| S.N. | Major equipment/ Instrument with Broad Specification                   |     |  |  |  |  |  |
|------|------------------------------------------------------------------------|-----|--|--|--|--|--|
| 1    | Models- full and cut. (wooden and acrylic)                             | 12  |  |  |  |  |  |
| 2    | Drawing equipments and instruments for class room teaching-large size. | 1   |  |  |  |  |  |
| 3    | Drawing board-half imperial size.                                      | 100 |  |  |  |  |  |
| 4    | T-square or drafter (Drafting Machine).                                | 1   |  |  |  |  |  |

#### MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS:

| Sr.No. | Name of the Equipment                              | Specification |
|--------|----------------------------------------------------|---------------|
| 1      | Various models of standard solids such as pyramid, |               |
|        | prism, cone, cylinder etc.                         |               |
| 2.     | Different objects or machine elements.             |               |

#### **12. E-LEARNING RECOURSES:**

List of Software/Learning Websites.

- http://www.slideshare.net/sahilsahil992/conic-section-1819818
- http://www.technologystudent.com/designpro/drawdex.htm
- http://www.engineeringdrawing.org/engg\_curves/problem-3-8-engineeringcurves/490/
- http://web.iitd.ac.in/~hirani/mel110-part3.pdf
- http://www.studyvilla.com/ed.aspx
- http://www.youtube.com/watch?v=a703\_xNeDao
- E-learning package from KOROS.
- E-learning package from Cognifront.

| CO. | Course Outcome                                  | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р |
|-----|-------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| NO. |                                                 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | Ο | S | S |
|     |                                                 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 0 | 0 |
|     |                                                 |   |   |   |   |   |   |   |   |   | 0 | 1 | 2 |
| CO1 | Draw geometrical figures and scales.            | 3 | 3 | 2 | 3 | - | - | - | - | 3 | 2 | 2 | 2 |
| CO2 | Drawing of various                              | 3 | 3 | 2 | 3 | - | - | - | - | 3 | 2 | 2 | 2 |
|     | engineering curves.                             |   |   |   |   |   |   |   |   |   |   |   |   |
| CO3 | Draw orthographic views of given components.    | 3 | 3 | 2 | 3 | - | - | - | - | 3 | 2 | 2 | 2 |
| CO4 | Draw isometric views of given component.        | 3 | 3 | 2 | 3 | - | - | - | - | 3 | 2 | 2 | - |
| CO5 | Use various drawing codes, conventions and      | 3 | 3 | 2 | 3 | - | - | - | - | 3 | 2 | 2 | - |
|     | symbols as per IS SP-46 in engineering drawing. |   |   |   |   |   |   |   |   |   |   |   |   |

# 13 POS AND PSOS ASSIGNMENT AND ITS STRENGTH OF ASSIGNMENT WITH EACH CO OF THE COURSE.

### Name and Designation of Course Designer :

- 1 Prof. Aher S M
- 2 Prof. Dhirbassi G D

Member Secretary PBOS

Chairman PBOS

# COURSE TITLE BASICS OF COMPUTER SYSTEM

COURSE CODE 6G203

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |  |
|---------------------------------------------------|---------------------------|--|
| Common to all branches                            | FIRST SEMESTER            |  |
| (CE/ME/EE/ET/CO/IT/AE/DDGM)                       | TING I SEMESTER           |  |

#### 1. **RATIONALE** :

This course pertains to basic technology level. It aims to developing fundamentals of Computer and its Applications in students of various programs. This will enable students in using application software's such as word processor, spreadsheets, and power point presentations in their professional fields. Further it will enable students to be lifelong learner.

#### 2. COMPETENCY :

"Use of computer and software application proficiently".

|    | eaching S                         |          | Total<br>Credits | Examination Scheme (Marks) |    |        | TotalExamination Scheme (Marks)Credits |        |  |        | s) |        |  |        |  |        |  |        |  |           |  |       |
|----|-----------------------------------|----------|------------------|----------------------------|----|--------|----------------------------------------|--------|--|--------|----|--------|--|--------|--|--------|--|--------|--|-----------|--|-------|
| (  | (Hours/ C                         | credits) | (L+T+P)          | Theory                     |    | Theory |                                        | Theory |  | Theory |    | Theory |  | Theory |  | Theory |  | Theory |  | Practical |  | Total |
| T  | т                                 | Р        | С                | ESE                        | РТ | ESE    | PA                                     |        |  |        |    |        |  |        |  |        |  |        |  |           |  |       |
|    | I                                 | I        | C                | LDL                        | 11 | (PR)   | (TW)                                   | 50     |  |        |    |        |  |        |  |        |  |        |  |           |  |       |
|    |                                   | 2        | 2                |                            |    | 25@    | 25                                     | 50     |  |        |    |        |  |        |  |        |  |        |  |           |  |       |
| Du | Duration of the Examination (Hrs) |          |                  |                            |    |        |                                        |        |  |        |    |        |  |        |  |        |  |        |  |           |  |       |

#### 3. TEACHING AND EXAMNATION SCHEME :

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

#### 4. COURSE OUTCOMES :

On successful completion of the course, the students will be able to:

- 1. Connect and operationalize computer system with its peripheral devices.
- 2. Create and Format documents in Microsoft Word.
- 3. Create spreadsheets in Microsoft Excel by using formulae.
- 4. Create and edit basic power point presentations in Microsoft PowerPoint.
- 5. Use internet for creating email-id, receive and send email with attachment & search information on internet.

# 5. DETAILED COURSE CONTENTS :

| Unit                                       | Major Learning Outcomes<br>(Cognitive Domain Only)                                                                                                                                                                                                                                                                                                                                                         | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit- 1<br>Basics of<br>Computer<br>System | 1a.Describe computer hardware<br>and software         1b.Identify & use of I/O devices         1c. Describe functioning of CU         ALU and memory unit         1d Differentiate various types of<br>printers         1e. Explain use of OS         1f. Demonstrate various file<br>handling operations                                                                                                  | <ul> <li>1.1 Concept of Hardware and Software</li> <li>1.2 Computer block diagram and its component like CPU, Control Unit, Arithmetic logic Unit (ALU) &amp; Memory Unit</li> <li>1.3 Input Output Devices: Keyboard, Mouse, Scanner, Monitor, Printers: Dot matrix, Laser, Inkjet, Plotters.</li> <li>1.4 System software and Application Software</li> <li>1.5 Operating system concepts, purpose and functions</li> <li>1.6 Operations of Windows OS.</li> <li>1.7 Creating and naming of file and folders</li> <li>1.8 Copying file, renaming and deleting of files and folders,</li> <li>1.9 Searching files and folders, installation application, creating shortcut of application on the desktop</li> <li>1.10 Overview of control Panel, Taskbar.</li> </ul> |
| Unit-2<br>Word<br>Processor                | <ul> <li>2a. Create, edit and save word document using basic text formatting features, page setup options &amp; print options.</li> <li>2b.Apply spells check &amp; grammatical check in the created document.</li> <li>2c. Insert graphics/clipart/ smart art/shapes/charts in the document.</li> <li>2d. Create tables, insert, delete rows and columns and apply different table properties.</li> </ul> | <ul><li>2.3 Effects like Bold, italic , underline, Subscript and superscript,</li><li>2.4 Case changing options,</li><li>2.5 Inserting, deleting, undo and redo, Copy and Moving (cutting) text within a</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| Unit- 3<br>Excel<br>(Spreadsheets)        | <ul> <li>3a. Create, open, save and print worksheet with page setup and print options.</li> <li>3b. Enter data and insert, delete and format cells, rows and columns.</li> <li>Use formula and functions</li> <li>3c. Insert formulas, functions and named ranges in worksheet.</li> <li>3d. Create chart of different types.</li> </ul>                                          | <ul> <li>3.1 Introduction to Excel,</li> <li>3.2 Introduction to data, Cell address, Excel Data Types, Concept of hyperlink</li> <li>3.3 Introduction to formatting number, text and date.</li> <li>3.4 Concept of worksheet and workbook.</li> <li>3.5 Understanding formulas, Operators in Excel, Operators Precedence, Understanding Functions, Common Excel Functions such as sum, average, min, max, date, sqrt, power, upper, lower, count, countif, roundup, sin, cos.</li> <li>3.6 Introduction to charts, overview of different types of charts available with Excel.</li> <li>3.7 Hide, unhide rows and columns.</li> <li>3.8 Concept of print area, margins, header, footer and other page setup options.</li> </ul> |
|-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit- 4<br>Power Point<br>Presentation    | <ul> <li>4a. Create a simple text slide<br/>using formatting, selecting a<br/>slide layout and insert pictures<br/>&amp; backgrounds.</li> <li>4b.Use different design<br/>templates for creating slides.</li> <li>4c. Apply slide transitions and<br/>slide timings and animation<br/>effect for slide show.</li> <li>4d. Insert hyperlink in the<br/>created slides.</li> </ul> | <ul> <li>4.1 Outline of an effective presentations</li> <li>4.2 Starting a New Presentation Files, Saving work,</li> <li>4.3 Creating new Slides, Working with textboxes.</li> <li>4.4 Changing a slides Layout, Applying a theme, Changing Colours, fonts and effects, Creating and managing custom Colour &amp; font theme, Changing the background.</li> <li>4.5 Use of design template and auto content wizard.</li> <li>4.6 Apply animation and transition to slides with timing effect.</li> <li>4.7 Slideshow: from beginning slideshow, from current slideshow, custom slideshow.</li> <li>4.8 Creating hyperlinks, Using action buttons</li> </ul>                                                                     |
| Unit- 5<br>Introduction<br>to<br>Internet | <ul> <li>5a. Know different terms<br/>related to internet and browsers.</li> <li>5b. Understand need &amp; duty of<br/>ISP &amp; List out different ISP in<br/>city.</li> <li>5c. Use internet for searching<br/>information and create, receive<br/>&amp; send email with attachment.</li> </ul>                                                                                 | <ul> <li>5.1 What is the Internet?</li> <li>5.2 Web pages, Home Pages.</li> <li>5.3 Use of web sites</li> <li>5.4 ISP: need &amp; duties of ISP, different ISP in city</li> <li>5.5 Browsers</li> <li>5.6 Universal resource locators (URL)</li> <li>5.7 Browsing or surfing the web</li> <li>5.8 Search engines</li> <li>5.9 E-mail and Creation of E-mail ID.</li> <li>Sending &amp; Receiving email with attachment.</li> <li>5.10 Chatting &amp; Video Conferencing tools:</li> <li>Skype and GTalk</li> <li>5.11 Applications of the Internet</li> </ul>                                                                                                                                                                   |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN :

|            |                           |                    | Distribution Of Theory Marks |            |            |       |  |  |
|------------|---------------------------|--------------------|------------------------------|------------|------------|-------|--|--|
| Unit<br>No | Title Of Unit             | Practical<br>Hours | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |  |
| 1          | Basics of Computer System | 08                 |                              |            |            | NA    |  |  |
| 2          | Word Processing           | 08                 |                              |            |            | NA    |  |  |
| 3          | Spreadsheet               | 06                 |                              |            |            | NA    |  |  |
| 4          | Presentation              | 06                 |                              |            |            | NA    |  |  |
| 5          | Introduction to Internet  | 04                 |                              |            |            | NA    |  |  |
|            | Total                     | 32                 |                              |            |            |       |  |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

## 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS :

| Sr.No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                                                                                                                                                      | Hours |
|--------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | 1    | Connect the peripherals to a computer system. Get the information about the manufacturers and prices of various components of a PC and laptop.                                                                                                          | 2     |
| 2      | 1    | Start and shutdown of windows, starting different<br>applications. Use of accessories like calculator, paint, notepad<br>& WordPad, Use of system tools like Disk Cleaner, Disk<br>defragmenter, System Information, System Restore & Control<br>panel. | 4     |
| 3      | 1    | Perform file management operations such as copying,<br>deleting, renaming, creating folders, renaming folders using<br>My computer, Windows Explorer, searching files and folders.                                                                      | 2     |
| 4      | 1    | Change windows format such as wall paper, date &time, installing printer, installing and removing programs by using add/remove programs.                                                                                                                | 2     |
| 5      | 2    | Prepare a sample doc files such as resume, application, time table etc. using all word processor tools from menu bar.                                                                                                                                   | 6     |
| 6      | 3    | Prepare sample spreadsheets such as sample result sheet,<br>salary sheet of employees using all MS-Excel tools from<br>menu bar. (applying excel formulae/functions)                                                                                    | 6     |
| 7      | 4    | Prepare sample power point presentation by applying MS-<br>Power Point tools such as design template, background,<br>transition and animation effect to slides.                                                                                         | 6     |
| 8      | 5    | Search information on internet .Use Internet to create email<br>account, send email with attachment, receive email and<br>management of email account.                                                                                                  | 2     |
| 9      | 5    | Use of E-commerce sites, Mobile apps for various online transactions.                                                                                                                                                                                   | 2     |
|        |      |                                                                                                                                                                                                                                                         | 32    |

#### 8. SUGGESTED STUDENTS ACTIVITIES :

Following is the list of proposed student activities like: assignments based on MS-Office, teacher guided self learning activities and lab based mini-projects on MS-Word, MS-Excel and MS-PowerPoint. These could be individual or group-based.

- a. Visit institute website.
- b. Manage files and folder using Windows.
- c. Prepare letter and project report using word processor
- d. Create result sheet by inserting student marks and show it in chart form on the same worksheet using Excel spreadsheet.
- e. Develop effective presentation of project report using PowerPoint Presentation.
- f. Use open source software like openoffice.org (latest version).

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Group based.
- b. Q & A technique.
- c. Individual based.
- d. Activity based learning
- e. Self Line learning.

#### **10. SUGGESTED LEARNING RESOURCE :**

| S.No. | Name of Book               | Author                                                | Publication                          |
|-------|----------------------------|-------------------------------------------------------|--------------------------------------|
| 1.    | Fundamentals of computers  | P.K.Sinha                                             | BPB Publication                      |
| 2.    | Computer course            | R.Taxali                                              | TMGH Publication                     |
| 3.    | MS-Office for Dummies      | Wallace Wang                                          | Wiley India, New<br>Delhi            |
| 4.    | Basic Computer Engineering | Dr. Shailendra Singh,<br>Pawan Thakur, Anurag<br>Jain | SatyaPrakashan,<br>New Delhi, India. |
| 5.    | Microsoft Office           | Ron Mansfield                                         | <b>BPB</b> Publication               |
| 6.    | Fundamentals of computers  | P.K.Sinha                                             | <b>BPB</b> Publication               |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED:

| Sr.No. | Name of equipment            | Brief specification                       |
|--------|------------------------------|-------------------------------------------|
|        | Computer System with latest  | Desktop Computer/Personal Computer        |
| 1.     | configuration along with     | (Windows OS Prof. Edition/Academic        |
|        | Windows Operating System and | edition) with preloaded operating systems |
|        | latest MS-Office.            | windows 7/windows 8 (academic Lic)        |
| 2.     | PROJECTOR                    | Multimedia Projector with wireless        |
|        |                              | connectivity between PC and Projector     |
| 3.     | PRINTER                      | HP 1022n laser printer                    |
|        | SCANNER                      | HPscanner ,Color Scan Method: Color,      |
|        |                              | Flatbed, Mirror Moving Scanner Optical    |
| 4.     |                              | Resolution: 800 x 1600 dpi Maximum        |
|        |                              | Scanning Area 304.8 x 431.8 mm ( 12x17    |
|        |                              | inch)                                     |
|        | Computer System with latest  | Desktop Computer/Personal Computer        |
| 5.     | configuration along with     | (Windows OS Prof. Edition/Academic        |
|        | Windows Operating System and | edition) with preloaded operating systems |
|        | latest MS-Office.            | windows 7/windows 8 (academic Lic)        |
| 6.     | PROJECTOR                    | Multimedia Projector with wireless        |
|        |                              | connectivity between PC and Projector     |

#### 12. LEARNING WEBSITE & SOFTWARE :

(Please mention complete URL of the E- resource CO wise)

- a. https://www.youtube.com/watch?v=cXBVMyKQ3ZY
- b. http://www.gcflearnfree.org/computerbasics/
- c. http://www.homeandlearn.co.uk/word2007\_2010/Word-2007-2010.html
- d. http://www.homeandlearn.co.uk/excel2007/Excel2007.html
- e. https://support.office.com/

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs)WITH COURSE OUTCOMES (COs) :

| SNo | Course Outcome                                                                                                              |   | POs |   |   |   |   | PSOs |   |   |    |    |    |
|-----|-----------------------------------------------------------------------------------------------------------------------------|---|-----|---|---|---|---|------|---|---|----|----|----|
|     |                                                                                                                             | 1 | 2   | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 01 | 02 |
| 1   | Connect and<br>operationalize<br>computer system with<br>its peripheral devices.                                            | 2 | 2   | 2 |   |   |   |      |   |   | 2  |    |    |
| 2   | Create and Format<br>documents in<br>Microsoft Word.                                                                        | 3 |     | 3 | 3 |   |   |      |   |   | 3  |    |    |
| 3   | Create spreadsheets in<br>Microsoft Excel by<br>using formulae.                                                             | 3 |     | 3 | 3 |   |   |      |   |   | 3  |    |    |
| 4   | Create and edit basic<br>power point<br>presentations in<br>Microsoft PowerPoint.                                           | 3 |     | 3 | 3 |   |   |      |   |   | 3  |    |    |
| 5   | Use internet for<br>creating email-id,<br>receive and send email<br>with attachment &<br>search information on<br>internet. | 1 | 1   | 1 | 1 |   |   |      |   |   | 1  |    |    |

#### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 R.T.Aghao Sr.Lecturer in APM Dept. , Govt. Polytechnic, Aurangabad
- 2 O.R.Varma Lecturer in IT Dept., Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

COURSE TITLE ENGLISH

COURSE CODE 6G301

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Common to all programmes                          | First                     |

#### **1. RATIONALE :**

English language has become a supreme necessity to pick up a solid core of knowledge. It has a power of linking us with the outside world. Competency in English is also important in business matters like transactions including e-mails, memos, reports and contracts in writingnot only for Indian industry, but also worldwide. Students having proficiency in reading, writing and speaking English has become a prospect of employment in the industry. Hence, this course is designed to help the students to communicate in English effectively.

#### 2. COMPETENCY:

At the end of studying this course students will be able to "Communicate in English language in spoken and written form."

#### **3.TEACHING AND EXAMINATION SCHEME:**

| Teac          | ching Scl | neme       | <b>Total Credits</b> | Examination Scheme           |    |              |     |                    |
|---------------|-----------|------------|----------------------|------------------------------|----|--------------|-----|--------------------|
| (             | In Hours  | <b>s</b> ) | (L+T+P)              | Theory Marks Practical Marks |    | Theory Marks |     | <b>Total Marks</b> |
| L             | Т         | Р          | С                    | ESE                          | РТ | ESE          | PA  |                    |
| 2             | -         | 2          | 4                    | 80                           | 20 | -            | 25* | 125                |
| Exam Duration |           | 3 Hrs      | 1 Hr                 | -                            | -  | -            |     |                    |

(\*): Out of 25 marks, 05 marks -micro-project assessment; 20 marks-progressive assessment. Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

#### 4. COURSE OUTCOMES:

- 1. Interpret the meaning of new words from the text.
- 2. Formulate grammatically correct sentences using new words.
- 3. Prepare resume in proper format.
- 4. Use relevant vocabulary to construct sentences.

# 5. COURSE DETAILS:

| Unit             | Major Learning Outcomes                       | Topics and Sub-topics         |
|------------------|-----------------------------------------------|-------------------------------|
|                  | (in cognitive domain)                         |                               |
| UNIT-I           | 1a. Understanding meaning of new words        | Text from the book            |
| Comprehension    | from the text.                                | &Vocabulary Building          |
|                  | 1b.Write summary of the text                  | 1.1.Man Versus Machine—       |
|                  | 1c. Responding to the questions from the      | MKGandhi                      |
|                  | text                                          | 1.2. Say No to Plastic Bags   |
|                  | 1d. Express ideas and views on learned        | 1.3. Interview of             |
|                  | topics                                        | Dr.A.P.J.AbdulKalam           |
|                  |                                               | 1.4. Dare to Dream-           |
|                  |                                               | N.R.Narayan Murthy            |
|                  |                                               | 1.5. The History Maker—       |
|                  |                                               | MaltiHola                     |
| UNIT-II          | 2a. Apply correct verbs in given sentences    | Functional Grammar            |
| Functional       | 2b. Use of correct structures in writing      | 2.1.Tenses & Time             |
| Grammar          | 2c. Identify different types of sentences     | 2.2. Sentence Patterns        |
|                  | 2d. Apply correct auxiliaries                 | 2.3. Types of Sentences       |
|                  | 2e. Use appropriate connectors in the given   | 2.4. Modal Auxiliaries        |
|                  | sentences                                     | 2.5. Connectors               |
|                  | 2f. Use appropriate prepositions in the given | 2. 6. Prepositions            |
|                  | sentences                                     | 2.7. Voice, Degree and        |
|                  | 2g. Apply correct and exact rules and         | Reported Speech               |
|                  | structures to transform the sentences         | 2.8. Punctuation Marks        |
|                  | 2h. Use of correct punctuations in writing    |                               |
| UNIT-III         | 3a. Writing a paragraph effectively           | 3.1.Paragraph Writing         |
| Craft of writing | 3b. Writing e-mail in proper formats          | 3.2.E-mail writing            |
|                  | 3c. Prepare resume in suitable format         | 3.3. Resume Writing           |
|                  |                                               |                               |
| UNIT-IV          | 4a. Formulate sentences using new words       | 4.1. Importance of effective  |
| Listening &      | 4b. Enrich vocabulary through reading and     | listening                     |
| Speaking Skills  | listening                                     | 4.2.Barriers in listening and |
|                  | 4c. Follow correct pronunciations,            | how to overcome them          |
|                  | intonations & accents in communication        | 4.3Problems in speaking       |
|                  |                                               | English faced by Indian       |
|                  |                                               | Students                      |
|                  |                                               |                               |

#### 6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY):

| Unit | Unit Title                                  | Teaching | Distribution of Theory Marks |            |            |             |  |
|------|---------------------------------------------|----------|------------------------------|------------|------------|-------------|--|
| No.  |                                             | Hours    | R<br>Level                   | U<br>Level | A<br>Level | Total Marks |  |
| Ι    | Text from the book &<br>Vocabulary Building | 12       | 08                           | 12         | 10         | 30          |  |
| II   | Functional Grammar                          | 12       | 05                           | 08         | 13         | 26          |  |
| III  | Craft of Writing                            | 06       | 04                           | 04         | 08         | 16          |  |
| IV   | Listening & Speaking<br>Skills              | 02       | 02                           | 02         | 04         | 08          |  |
|      | Total                                       | 32       | 19                           | 26         | 35         | 80          |  |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from the above table.

#### 7.SUGGESTED EXERCISES/PRACTICALS :

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive**, **psychomotor and affective domain**) so that students are able to acquire the competencies.

| Sr. | Unit | Practical Exercises                                       | Approx. Hrs. |
|-----|------|-----------------------------------------------------------|--------------|
| No. | No.  | (Outcomes in Psychomotor Domain)                          | required     |
| 1.  | Ι    | Make Sentences Using Correct Collocations                 | 04           |
| 2.  | II   | Frame Sentences Using Appropriate Preposition/Conjunction | 04           |
| 3.  | III  | Make Sentences Using Correct Tenses                       | 04           |
| 4.  | IV   | Make Sentences Using Seven Basic Sentence Patterns        | 04           |
| 5.  | V    | Transform Sentences in Reported Speech                    | 04           |
| 6.  | VI   | Prepare an Effective Resume in a Proper Format            | 04           |
| 7.  | VII  | Draft Formal E-mails                                      | 04           |
| 8.  | VIII | Listen a Paragraph/Speech/Story and Make a Summary        | 04           |
|     |      | Total                                                     | 32           |

#### 8. SUGGESTED STUDENT ACTIVITIES :

Following is the list of proposed student activities like:

- a. Read newspapers daily.
- b. Solve exercises on lexical items.

- c. Use apps for practice.
- d. Use pocket dictionary to increase vocabulary.
- e. Listen the news bulletin on radio.
- f. Play different word games to improve vocabulary.
- g. Write different articles & posts.
- h. Practice role-playing.
- i. Write a story of own experiences.
- j. Practice listening comprehension.
- k. Collect articles from newspapers & make a collection.
- 1. Practice paragraph writing.
- m. Collect different business letters.

#### **9.SPECIAL INSTRUCTIONAL STRATEGIES (if any) :**

- a. Arrange different competitions to solve various grammatical items.
- b. Motivate students to listen, speak, read and write English in their day-to-day life.
- c. Student centered methods and techniques of teaching and learning e.g. group discussion, role-play, individual and group assignments should be used so as to make the students actively participate in the teaching-learning process.

#### SUGGESTED TITLES FOR MICRO-PROJECTS :

*A micro-project* is planned to be undertaken by a student. He/she ought to submit it by the end of the semester to develop the industry oriented COs. The micro-project could be industry application-based, internet-based, workshop-based, laboratory-based or field-based. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. A suggestive list is given here. Similar micro-projects could be added by the concerned faculty:

- a. The use of English language in the user manual of electronic appliances used at home.
- b. Prepare an advertisement for five daily used products using contextual vocabulary.
- c. Observe environmental problems in your locality and frame at least ten slogans to createan awareness.
- d. Take an interview of any successful person in your locality in context with his life journey, inspiration, social contribution, role model and keys to success.
- e. Prepare a leaflet giving information about your institute.
- f. Write a review of your favourite movie/drama/novel.
- g. Find out the difficulties in speaking English faced by the students from rural areas.

#### **10. SUGGESTED LEARNING RESOURCES :**

| Sr. | Title of Book                                 | Author                          | Publication       |
|-----|-----------------------------------------------|---------------------------------|-------------------|
| No. |                                               |                                 |                   |
| 1   | English Grammar & Composition                 | R. C. Jain                      | Macmillan         |
| 2   | Business Letters & E-mails                    | JyotiNandedkar                  | Saket Pub.        |
| 3   | Business Correspondence and Report<br>writing | R. C. Sharma &<br>Krishna Mohan | Tata McGraw Hill  |
| 4   | Contemporary English Grammar                  | David Green                     | Macmillan         |
| 5   | A Communicative Grammar of<br>English         | Geofray Leech<br>&Jansvartvik   | Pearson Education |
| 6   | *Spectrum- A Text Book on English             | -                               | MSBTE             |
| 7   | * A Text Book on English                      | -                               | MSBTE             |

### 11. Major Equipments/ Instruments with Broad Specifications

| Sr.No. | Name of the Equipment                 | Specification |
|--------|---------------------------------------|---------------|
| 1      | Digital English Language Laboratory   |               |
| 2      | Computers and Headphones              |               |
| 3      | Magazines, Articles, Journals in Lab. |               |

### **12. E-learning resourses**

(Please mention complete URL of the E- resourses CO wise)

| 1 | https://www.nptel.ac.in/courses |
|---|---------------------------------|
| 2 | https://www.k12reader.com       |
| 3 | https://www.eduaction.com       |
| 4 | https://www.k5learning.com      |
| 5 | https://www.english4u.com       |

| CO  | Course Outcome           | )1 | PO2 | PO3 | P04 | P05 | P06 | PO7 | P08 | P09 | 10   | )1   | )2   |
|-----|--------------------------|----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| NO  |                          |    | P(  | PO10 | PSO1 | PSO2 |
|     |                          |    |     |     |     |     |     |     |     |     |      |      |      |
|     | Interpret the meaning of | 3  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 3   | 1    | -    | -    |
| CO1 | new words from the text. |    |     |     |     |     |     |     |     |     |      |      |      |
|     | Formulate grammatically  | 3  | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 3   | 1    | -    | -    |
| CO2 | correct sentences using  |    |     |     |     |     |     |     |     |     |      |      |      |
|     | new words.               |    |     |     |     |     |     |     |     |     |      |      |      |
|     | Prepare resume in proper | 1  | 1   | 2   | 1   | 3   | 3   | 2   | 3   | 3   | 3    | -    | -    |
| CO3 | format.                  |    |     |     |     |     |     |     |     |     |      |      |      |
|     | Use relevant vocabulary  |    | 1   | 1   | 1   | 1   | 1   | 1   | 1   | 2   | 1    | -    | -    |
| CO4 | to construct sentences.  |    |     |     |     |     |     |     |     |     |      |      |      |

# 13. POs and PSOs assignment and its strength of assignment with each CO of the Course

### **Course Curriculum Design Committee**

| Sr. | Name of the        | Designation and Institute                               |
|-----|--------------------|---------------------------------------------------------|
| No  | faculty member     |                                                         |
| 1   | Mrs. P.Y. Kamble   | Lecturer in English, Government Polytechnic, Aurangabad |
| 2   | Mrs. M.S. Ban      | Lecturer in English, Government Polytechnic, Aurangabad |
| 3   | Mr. P.V. Deshmukh  | Lecturer in English, Government Polytechnic, Aurangabad |
| 4   | Mr. R.L. Korde     | Lecturer in English, Government Polytechnic, Aurangabad |
| 5   | Mr. D.D. Gangthade | Lecturer in English, Government Polytechnic, Aurangabad |
| 6   | Mr. A.P. Jagtap    | Lecturer in English, Government Polytechnic, Osmanabad  |

Member Secretary PBOS

Chairman PBOS

Co-coordinator science and Humanities

# COURSE TITLEENVIRONMENTAL SCIENCECOURSE CODE6G304

| DIPLOMA PROGRAMME IN WHICH THIS COURSE IS<br>OFFERED | SEMESTER |
|------------------------------------------------------|----------|
| ME, CE, EE, E&TC, CO, IT, AE                         | FIRST    |

GPA

#### **1. RATIONALE:**

The present plight of the world as a victim to a number of environmental setbacks ranging from global warming, ozone layer depletion, acid rains led to alarmingly increase in world pollution levels. This has led to the dangerous situation threatening existence of biosphere on the earth. Diploma engineers also get confronted with this issue in their professional life.. Diploma engineers need to be aware of environment and associated issues so that he can help in protection and preservation of environment.

#### 2. COMPETENCY:

"Contribute in overall preservation of eco system of organization."

#### 3. TEACHING AND EXAMINATION SCHEME:

| Teach | ing Sche | me | Total              | Examination Scheme              |    |              |    |                |
|-------|----------|----|--------------------|---------------------------------|----|--------------|----|----------------|
| (In   | Hours)   |    | Credits<br>(L+T+P) | Theory Marks Practical<br>Marks |    | Theory Marks |    | Total<br>Marks |
| L     | Т        | Р  | C                  | ESE                             | PT | ESE (PR)     | PA | - 0            |
| -     | -        | 2  | 2                  |                                 |    |              | 50 | 50             |
| Exa   | m durati | on |                    |                                 |    |              |    |                |

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

#### 4. COURSE OUTCOMES :

At the end of this course, students would be able to -

- 1. Analyze and assess the impact of biodiversity and its loss on environment
- 2. Identify causes of pollution in working system and apply control measures for prevention.
- 3. Apply provisions of various environmental protection acts in practice.
- 4. Appreciate correlation between Human population and its effect on environment.
- 5. Read, analyze and apply various laws and regulations concerning environmental issues.

# GPA

# 5. COURSE DETAILS:

| 5. COURSE DETA                                 |                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit                                           | Major Learning<br>Outcomes                                                                                                                                                                                  | <b>Topics and Sub-topics</b>                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unit –I<br>Environment and<br>studies          | (in cognitive domain)1a. Write genesis of<br>environmental concerns1b. Identify the various<br>types of environmental<br>issues.                                                                            | <ul> <li>1.1 Definition , Scope and importance of<br/>Environmental studies</li> <li>1.2 Meaning of environment, ,<br/>Environment and its components,<br/>Segments of environment, scientific<br/>aspects</li> <li>1.3 Global environment crisis and factors<br/>affecting it. Deforestation. aquatic life<br/>and tsunami effects ,Population, Carbon<br/>dioxide emissions, pollution, Extinction<br/>of species etc. Ecological Foot print</li> </ul> |
| Unit– II<br>Environmental<br>Natural Resources | <ul> <li>2a. Classify different<br/>resources</li> <li>2b. Outline issues<br/>associated with<br/>different resources.</li> <li>2c. Develop strategies to<br/>conserve of natural<br/>resources.</li> </ul> | <ul> <li>2.1. Renewable and Nonrenewable natural resources and associated issues as under,</li> <li>a. Forest resources</li> <li>b. Water resources</li> <li>c. Energy resources</li> <li>d. Land resources</li> <li>e. Food resources</li> <li>f. Energy resources</li> <li>2.2. Role of individual in conservation of natural resources</li> </ul>                                                                                                      |
| Unit– III<br>Ecosystems                        | <ul> <li>3a. Outline ecosystem.</li> <li>3b. Categorize various ecosystems.</li> </ul>                                                                                                                      | <ul> <li>3.1 Concept of Ecosystem</li> <li>3.2 Structure and function of ecosystem</li> <li>3.3 Structure and functions of following ecosystems,</li> <li>a. Forest Ecosystem</li> <li>b. Grassland Ecosystem</li> <li>c. Desert Ecosystem</li> <li>d. Aquatic ecosystem</li> </ul>                                                                                                                                                                       |
| Unit– IV<br>Biodiversity and<br>Conservation   | <ul> <li>4a. Outline Biographical<br/>classification of India</li> <li>4b. Assess Biodiversity<br/>loss and its impact.</li> </ul>                                                                          | <ul> <li>4.1 Introduction, Values of the Biodiversity, Biographical classification of India</li> <li>4.2 Biodiversity loss and its impact</li> <li>4.3 Conservation of Biodiversity, Efforts made in India.</li> </ul>                                                                                                                                                                                                                                    |
| Unit - V<br>Environmental                      | <ul><li>5a. Describe pollution and<br/>its types</li><li>5b. Describe cause, effect</li></ul>                                                                                                               | <ul><li>5.1 Definition of pollution and its types</li><li>5.2 Causes, effects and control measures<br/>of following types of pollutions</li></ul>                                                                                                                                                                                                                                                                                                         |

| Pollution                                         | relationship.<br>5c. Conduct Survey on<br>Environmental<br>Pollution                                                                          | <ul> <li>a. Air Pollution</li> <li>b. Water Pollution</li> <li>c. Soil Pollution</li> <li>d. Marine Pollution</li> <li>e. Thermal Pollution</li> <li>f. Nuclear hazards and pollution</li> <li>5.3 Pollution norms, rules and bye laws</li> <li>5.4 Solid waste management: Causes,<br/>Effects and control measures of<br/>urban and industrial waste.</li> </ul>                                                                                                                                                                                                                                              |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – VI<br>Social Issues and<br>Environment     | <ul> <li>6a. Identify social issues related to environment</li> <li>6b. Suggest control measures to counter the issues,</li> <li>.</li> </ul> | <ul> <li>6.1 Urban problems related to Energy,<br/>Measures of water conservation<br/>including Rain water harvesting,<br/>Watershed Management</li> <li>6.2 Climatic changes, Global Warming,<br/>Acid rain, Ozone layer depletion issue,<br/>Nuclear accidents and holocaust. Kyoto<br/>Protocol, Climate justice</li> <li>6.3 Introduction to Environment<br/>(protection) act(prevention and control<br/>of pollution),Wildlife protection act,<br/>Forest protection act Air ( Prevention<br/>and control of pollution) Act, Water<br/>related Environmental<br/>legislation, public awareness.</li> </ul> |
| Unit – VII<br>Human population<br>and environment | 7a. Use of ICT in<br>environment and<br>human health areas.                                                                                   | 7.1Concepts of Population Growth,<br>Environment and human health, Role of<br>information technology in environment<br>and human health                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

| Unit | Unit Title                          | Teaching<br>Hours | examination marks |            |            |                |  |
|------|-------------------------------------|-------------------|-------------------|------------|------------|----------------|--|
|      |                                     |                   | R<br>Level        | U<br>Level | A<br>Level | Total<br>Marks |  |
| Ι    | Environment and studies             | 4                 | NA                | NA         | NA         | NA             |  |
| II   | Environmental Natural resources     | 4                 | NA                | NA         | NA         | NA             |  |
| III  | Ecosystems                          | 4                 | NA                | NA         | NA         | NA             |  |
| IV   | Biodiversity and conservation       | 4                 | NA                | NA         | NA         | NA             |  |
| V    | Environmental Pollution             | 8                 | NA                | NA         | NA         | NA             |  |
| VI   | Social issues and<br>environment    | 4                 | NA                | NA         | NA         | NA             |  |
| VII  | Human population and<br>environment | 4                 | NA                | NA         | NA         | NA             |  |
|      | Total                               | 32                | NA                | NA         | NA         | NA             |  |

#### 6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY) :

**GPA** 

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

### 7. SUGGESTED EXERCISES/PRACTICALS :

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive, psychomotor and affective domain**) so that students are able to acquire the competencies.

Here all the practical exercises are to be completed by students in a group. The group size should be 10 to 12. The groups should be formed by concerned teacher in consultation with students Every group should be assigned a group leader. All groups will complete the practical assignments in spare time and during Sundays and holidays. No separate time slots will be allotted to these practical exercises. Teacher will guide and give necessary inputs for modus operand of exercises.

| S.  | Unit | Practical Exercises                                           | Approx.  |
|-----|------|---------------------------------------------------------------|----------|
| No. | No.  | (Outcomes in Psychomotor Domain)                              | Hrs.     |
|     |      |                                                               | required |
| 1   | Ι    | Prepare report on environmental issues of your institute /    | 04       |
|     |      | Selected Premises                                             |          |
| 2   | II   | Collect information related to natural resources of India and | 02       |
|     |      | methods adopted for conservation of these resources           |          |

|    | 7 77      |                                                                                                                          | ~ <b>^</b> |
|----|-----------|--------------------------------------------------------------------------------------------------------------------------|------------|
| 3  | I, II     | Prepare "Energy Audit Report" of a small home. And give suggestions for conservation of energy.                          | 02         |
| 4  | III, IV   | Examine water usage of a small community/locality in                                                                     | 02         |
|    |           | city/Apartment /Your Institute and prepare a Report on actions                                                           |            |
|    |           | that could be taken to conserve the water fron following point                                                           |            |
|    |           | of view:                                                                                                                 |            |
|    |           | How much water is consumed                                                                                               |            |
|    |           | How much wastage of water occurs                                                                                         |            |
|    |           | How can demand of water be reduced                                                                                       |            |
|    |           | How can ecological footprint of water they get can be reduced                                                            |            |
|    |           | What other environment friendly ways of getting water can                                                                |            |
|    |           | one implement                                                                                                            |            |
|    |           | What is the quality of water and how can it be improved                                                                  |            |
|    |           | How reuse and recycling of water can be done                                                                             |            |
|    |           | How users can be educated for proper use of water                                                                        |            |
| 5  | I,II,III, | Visit, "Roof water harvesting" system installed in nearby area                                                           | 02         |
| 5  | VI        | and prepare a detailed report. Include local bodies legislation                                                          | 02         |
|    | * 1       | as regards roof water harvesting                                                                                         |            |
| 6  | I,II,III  | Undertake "Tree plantation project" and plant at least 03 trees                                                          | 02         |
| 0  | 1,11,111  | per student in your Institute. Prepare detailed report on tree                                                           | 02         |
|    |           | plantation.                                                                                                              |            |
| 7  | I,II,III  | Visit, study and analyze a "Solar systems" installed in nearby                                                           | 02         |
| /  | 1,11,111  | area and prepare a detailed report. Include following types of                                                           | 02         |
|    |           |                                                                                                                          |            |
|    |           | systems,<br>a.Household Solar water heating systems                                                                      |            |
|    |           | b. Solar P-V Systems                                                                                                     |            |
|    |           | c.Solar roof top Net metering systems                                                                                    |            |
| 8  | IV        | Preparation of Biodiversity Report:                                                                                      | 04         |
| 0  | 1 V       | Select a small park or garden in your area. Prepare a                                                                    | 04         |
|    |           | Biodiversity register: list all the species found in place ,find                                                         |            |
|    |           | their scientific names with the help of a botanist. Interview                                                            |            |
|    |           | -                                                                                                                        |            |
|    |           | long term users of the place and find out about loss of<br>biodiversity. Write a report describing your observations and |            |
|    |           | your recommendations for conservation of biodiversity.                                                                   |            |
| 9  | V         |                                                                                                                          | 06         |
| 9  | v         | Prepare a report on water pollution scenario in your institute                                                           | 00         |
|    |           | and make a detailed report. Following activities can be                                                                  |            |
|    |           | undertaken with permission,                                                                                              |            |
|    |           | Locating and studying water consumption locations in institute like Water coolers, R.O units, Filters, taps.             |            |
|    |           | =                                                                                                                        |            |
|    |           | Taking and checking drinking water samples periodically from tasting authorities and keeping records                     |            |
|    |           | from testing authorities and keeping records.                                                                            |            |
|    |           | Preparing and executing schedule for cleaning water tanks,                                                               |            |
| 10 | 17        | water filters, RO units etc.                                                                                             | 02         |
| 10 | V         | Prepare report Vehicular pollution checking in your institute:                                                           | 02         |
|    |           | Here sample check the two wheelers, four wheeler vehicles of                                                             |            |
|    |           | employees, students with the help of Exhaust gas analyzer /                                                              |            |
|    | • •       | Smokemeter periodically and check the levels of pollution.                                                               | 02         |
| 11 | V         | Prepare report of Noise and Air pollution levels at a crowded                                                            | 02         |
|    |           | square of city using Deciblemeter and Air sampling device                                                                | ~ ~        |
| 12 | VI        | Collect information on Global Warming, Acid rain, Ozone                                                                  | 02         |

| layer depletion issue,Nuclear accidents and holocaust. Kyoto<br>Protocol, Climate justice, Environment protection laws and<br>regulations. |    |
|--------------------------------------------------------------------------------------------------------------------------------------------|----|
| Total                                                                                                                                      | 32 |

### 8. SUGGESTED STUDENT ACTIVITIES:

Following is the list of proposed student activities like:

- 1 Search different journals on Environment
- 2 Collect info of Environmental laws and regulations from websites.
- 3 Collect various news paper cuttings on the issues of environment
- 4 Observe and celebrate following important days on environment,
  - 22 April- Earth Day
  - 1 7 July Vanamahotsava Week
  - 11 International Mountain day
  - 2 February Worlds wetland day
  - 5 April National Maritime day
  - 8 June World Oceans day
  - 22 May international Day of Biological diversity
  - 22 March World Water day.
  - 21 March World Forestry Day
  - 16 October Worlds food day
  - 22 September –Car free day
  - 29 October-National disaster reduction day
  - 21 July Worlds Population day
  - 8 March Womans day
- 5 Prepare charts, banners, posters on environment and its protection and display in class, notice boards.
- 6 Participate in social campaigns concerning environment and its preservation.

7

### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATEGIES:

- 1. Q & A Techniques.
- 2. Field Visits
- 3. Expert Lectures.

#### **10. SUGGESTED LEARNING RESOURCES :**

| <b>S.</b> |   | Title of Book                 | Author          | Publication             |
|-----------|---|-------------------------------|-----------------|-------------------------|
| No.       |   |                               |                 |                         |
|           | 1 | Environmental Studies         | R.Rajgopalan    | OXFORD university press |
| /         | 2 | Environmental Studies         | Anindata Basak  | Pearson education       |
| ,         | 3 | Air Pollution                 | M.N. Rao        | Tata Macgrawhill        |
| 2         | 4 | Elements of Environmental     | P. Meenakshi    | Prentice Hall           |
|           |   | Science and Engineering       |                 |                         |
|           | 5 | Introduction to Environmental | P.AarneVesilind | Thomson                 |
|           |   | Engineering                   | and Susan       |                         |
|           |   |                               | Morgan          |                         |

| 11. MAJ( | 11. MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS : |          |  |  |  |
|----------|-------------------------------------------------------------|----------|--|--|--|
| Sr. No.  | Major equipment/ Instrument with Broad Specification        | Quantity |  |  |  |
| 1        | Biological Microscope                                       | 01       |  |  |  |
| 2        | Air sample testing setup                                    | 01       |  |  |  |
| 3        | Water sample testing setup                                  | 01       |  |  |  |
| 4        | Exhaust gas Analyzer                                        | 01       |  |  |  |
| 5        | Smoke meter                                                 | 01       |  |  |  |
| 6        | PC with Net connectivity                                    | 01       |  |  |  |
| 7        | LCD Projector                                               | 01       |  |  |  |

GPA

## **12. E-LEARNING RESOURCES:**

(Please mention complete URL of the E- recourse CO wise)

- 1. <u>www.unep.org</u>
- 2. <u>www.ipcc.ch</u>
- 3. <u>www.grida.no</u>
- 4. <u>www.wildlifeinindia.com</u>
- 5. www.fsi.nic.in/sfr\_2009.htm
- 6. <u>www.unesco.org</u>
- 7. <u>www.chilika.com</u>
- 8. <u>www.foodfirst.org/media/opeds/2000/4-greenrev.html</u>
- 9. <u>www.cites.org</u>
- 10. http://projecttiger.nic.in/
- 11. www.iwmi.cgiar.org/
- 12. www.worldwater.org
- 13. <u>www.indiaenergyportal.org</u>
- 14. http://www.lifeaftertheoilcrash.net/
- 15. www.mmpindia.org/
- 16. <u>www.pcri.com</u>
- 17. http://www.unwater.org/statistics\_pollu.html

# List of Films

- 1. The 11<sup>th</sup> hour
- 2. The many faces of madness
- 3. Planet Earth-BBC documentary
- 4. The childrens of Amazon
- 5. The Blue Planet-BBC documentary
- 6. End of Line
- 7. The State of planet BBC Documentary
- 8. The truth about Tigers
- 9. Bringing home rain- A film by SushamaVeerappa.
- 10. Drinking the sky BBC documentary
- 11. A Crude Awakening :The OIL Crash A documentary by Basil Gelpke
- 12. Poison on a platter Documentary by Mahesh Bhatt
- 13. The story of bottled water A documentary by Annie Leonard on packaged water industry.(Download from <a href="https://www.storyofstuff.org">www.storyofstuff.org</a> )

6G304

# 13. POS AND PSOS ASSIGNMENT AND ITS STRENGTH OF ASSIGNMENT WITH EACH CO OF THE COURSE:

GPA

| CO.<br>NO. | Course Outcome                                                                                  | P<br>O<br>1 | P<br>O<br>2 | P<br>O<br>3 | P<br>O<br>4 | P<br>O<br>5 | P<br>O<br>6 | P<br>O<br>7 | P<br>O<br>8 | P<br>O<br>9 | P<br>O<br>1<br>0 | P<br>S<br>O<br>1 | P<br>S<br>O<br>2 |
|------------|-------------------------------------------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|------------------|------------------|------------------|
| CO1        | Analyze and assess the impact of biodiversity and its loss on environment.                      | 2           |             |             |             | 2           | 2           |             |             |             |                  |                  |                  |
| CO2        | Identify causes of pollution in<br>working system and apply control<br>measures for prevention. |             |             |             |             | 2           | 2           |             |             |             |                  |                  |                  |
| CO3        | Apply provisions of various<br>environmental protection acts in<br>practice.                    | 2           |             |             |             | 3           | 3           |             |             | 3           |                  |                  |                  |
| CO4        | Appreciate correlation between<br>Human population and its effect on<br>environment.            | 2           |             |             |             | 2           | 2           |             |             | 3           |                  |                  |                  |
| CO5        | Read, analyze and apply various<br>laws and regulations concerning<br>environmental issues.     | 2           |             |             |             | 3           | 3           |             |             |             |                  |                  |                  |

## **Course Curriculum Design Committee:**

| Sr No | Name of the faculty members | Designation and Institute                     |
|-------|-----------------------------|-----------------------------------------------|
| 1     | Prof.S.P.Shiralkar          | Lecturer in Mechanical Engineering Department |
| 2     | Prof. A.B. Deshpande        | Lecturer in Mechanical Engineering Department |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEENGINEERING PHYSICSCOURSE CODE6G103

| Diploma Programmes in which this course is offered | Semester in which offered |
|----------------------------------------------------|---------------------------|
| ME/CE/ET/EE/CO/IT/AE                               | First/Second Semester     |

#### **1. RATIONALE:**

Engineering Physics represents foundation level of courses. It is considered as the mother of all engineering programmes. The principles, laws, hypothesis, concepts, ideas which are acquired by students through this course help in reinforcing the knowledge of technology and solving engineering problems.

#### 2. COMPETENCIES:

The course content should be taught and implemented with the aim to develop different types of skills leading to the achievement of the following competencies...

- I. Apply facts, concepts and principles of Physics for solving various Engineering Problems
- II. Observe, describe, interpret and interact with physical and engineering world through concepts and principles of physics.

| Teac | hing Sch   | eme   | Total              |                 | <b>Examination Scheme</b> |          |                 |     |  |
|------|------------|-------|--------------------|-----------------|---------------------------|----------|-----------------|-----|--|
|      | (In Hours) |       | Credits<br>(L+T+P) | Theory<br>Marks |                           | Practica | Practical Marks |     |  |
| L    | Т          | Р     | С                  | ESE             | PT                        | ESE      | PA              | 150 |  |
| 3    | 0          | 2     | 5                  | 80~             | 20~                       | 25@      | 25              | 150 |  |
| Ex   | am Dura    | ation |                    | 2 Hrs.          | 1 Hr.                     | 2 Hrs.   |                 |     |  |

### **3. TEACHING AND EXAMINATION SCHEME:**

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination , ~ Online Examination.

### 4. COURSE OUTCOMES:

Students will able to

- 1. Determine relevant physical properties of a given material.
- 2. Analyze thermal, optical and acoustical system using properties of heat, light and sound.
- 3. Apply fundamentals electrical laws.

4. Select different type of semiconductors, x-ray and optical fibre application.

| Unit          | Major Learning       | Topics and Sub-topics                                 |
|---------------|----------------------|-------------------------------------------------------|
|               | Outcomes             |                                                       |
| UNIT-I        | 1a. Measure Strength | Elasticity:                                           |
| General       | parameter.           | 1.1 Definitions of deforming force, restoring force,  |
| Properties of | 1b. Measure          | elasticity, plasticity, Factors affecting elasticity. |
| Matter        | automization and     | 1.2 Stress Tensile, Compressive, Volumetric and       |
|               | lubricity of given   | Shear stress, Strain: Tensile, Volumetric and         |
|               | liquid.              | Shear strain.                                         |
|               |                      | 1.3 Elastic limit, Hooke's law.                       |
|               |                      | Elastic co-efficient- Young's modulus, bulk           |
|               |                      | modulus, modulus of rigidity and relation             |
|               |                      | between them                                          |
|               |                      | Viscosity                                             |
|               |                      | 1.4 Viscous force, definition of viscosity, velocity  |
|               |                      | gradient, Newton's law of viscosity, coefficient      |
|               |                      | of viscosity and its SI unit.                         |
|               |                      | 1.5 Streamline and turbulent flow with examples,      |
|               |                      | critical velocity, Reynold's number and its           |
|               |                      | significance.                                         |
|               |                      | Surface tension                                       |
|               |                      | 1.6 Cohesive and adhesive force, Laplace's            |
|               |                      | molecular theory of surface tension, Surface          |
|               |                      | Tension: definition and unit,                         |
|               |                      | 1.7 effect of temperature and impurity on surface     |
|               |                      | tension. Angle of contact, Capillarity and            |
|               |                      | examples of capillary action                          |
|               |                      | 1.8 derivation of expression for surface tension by   |
|               |                      | capillary rise method, applications of surface        |
|               |                      | tension.                                              |

# 5. COURSE DETAILS:

| UNIT-II        | 2a. Analyze thermal   | Heat :                                                     |  |  |  |
|----------------|-----------------------|------------------------------------------------------------|--|--|--|
| Heat Light And | system.               | 2.1 Three modes of transistor of heat ,                    |  |  |  |
| Sound          | 2b. Analyze optical   | conduction convection Radiation , law of                   |  |  |  |
|                | system.               | thermal conductivity                                       |  |  |  |
|                | 2c. Analyze acoustic  | 2.2 Coefficient of thermal conductivity,,                  |  |  |  |
|                | system.               | expansion of solid and coefficient of linear,              |  |  |  |
|                |                       | aerial and cubical expansion & relation                    |  |  |  |
|                |                       | between them                                               |  |  |  |
|                |                       | LIGHT :                                                    |  |  |  |
|                |                       | 2.3 Introduction to reflection and refraction of           |  |  |  |
|                |                       | light, Snell's Law,                                        |  |  |  |
|                |                       | 2.4 Dispersion. Total internal reflection of light.        |  |  |  |
|                |                       | Critical angle, Simple problems.                           |  |  |  |
|                |                       | <b>Properties of sound</b> :                               |  |  |  |
|                |                       | 2.5 Wave motion transverse & longitudinal                  |  |  |  |
|                |                       | wave                                                       |  |  |  |
|                |                       | 2.6 Free & forced vibration , Resonance formula            |  |  |  |
|                |                       | calculate velocity of sound by resonance tube              |  |  |  |
|                |                       | method                                                     |  |  |  |
| UNIT-III       | 3a.Analyze electrical | 3.1 Electric charge, Coulomb's Law of Charges, Unit        |  |  |  |
| Electrostatics | system.               | charge, field, intensity of electric field, electric lines |  |  |  |
| And Current    |                       | of forces (Properties) Electric Flux, Flux Density.        |  |  |  |
| Electricity    |                       | 3.2 Concept of resistance, Specific resistance,            |  |  |  |
|                |                       | Whetstone's network, meter bridge, balancing               |  |  |  |
|                |                       | condition of meter bridge, measurement of unknown          |  |  |  |
|                |                       | resistance using meter bridge. Problems.                   |  |  |  |
|                |                       | 3.3 Potential, Potential drop along the length of          |  |  |  |
|                |                       | wire, Principle of Potentiometer, Potential gradient,      |  |  |  |
|                |                       | E.M.F. Unit, Comparison of EMF using                       |  |  |  |
|                |                       | potentiometer                                              |  |  |  |

|                | 4 TT 1         | C    | • • •                                           |
|----------------|----------------|------|-------------------------------------------------|
| UNIT-IV        | 4a. Use modern | Sem  | iconductor :                                    |
| Modern Physics | materials      | 4.1  | Classification of solids on the basis of band   |
|                | 4b. Use X-ray  |      | theory: forbidden energy gap, conductor,        |
|                |                |      | insulator semiconductor                         |
|                |                | 4.2  | Intrinsic, extrinsic, semiconductor doping, P   |
|                |                |      | and n type semiconductor electrical             |
|                |                |      | conduction through p and n semiconductor        |
|                |                |      | .P-N junction diode semiconductor metal and     |
|                |                |      | insulator.                                      |
|                |                | 4.3  | Optical fibre: principle, structure of optical  |
|                |                |      | fibre, propagation of light wave through        |
|                |                |      | optical fibre, derivation of numerical aperture |
|                |                |      | and acceptance angle                            |
|                |                |      | X-rays:                                         |
|                |                | 4.4  | Origin of X-rays, production of X-rays using    |
|                |                |      | Coolidge's X-ray tube                           |
|                |                | 4.5. | Minimum wavelength of X-ray derivation,         |
|                |                |      | properties of X-rays, applications of           |
|                |                |      | X- rays: engineering, medical and scientific    |

# 6. SUGGESTED SPECIFICATION TABLE WITH HOURS & MARKS (THEORY) :

|             |                              |          | Distribution of Theory |       |       |       |
|-------------|------------------------------|----------|------------------------|-------|-------|-------|
| TT :4       |                              | Teaching | Marks                  |       |       |       |
| Unit<br>No. | Unit Title                   | Hours    | R                      | U     | Α     | Total |
| 190.        |                              |          | Level                  | Level | Level |       |
| 1           | GENERAL PROPERTIES OF MATTER | 12       | 6                      | 7     | 7     | 20    |
| 2           | HEAT LIGHT AND SOUND         | 12       | 6                      | 7     | 7     | 20    |
| 3           | ELECTRICITY                  | 12       | 6                      | 7     | 7     | 20    |
| 4           | MODERN PHYSICS               | 12       | 6                      | 7     | 7     | 20    |
|             | TOTAL                        | 48       | 24                     | 28    | 28    | 80    |

#### Legends:

R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

#### 7. SUGGESTED LIST OF EXERCISES/PRACTICAL/EXPERIMENTS:

The exercises/practical/experiments should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency. Following is the list of exercises/practical/experiments for guidance.

| Sr.<br>No. | Unit<br>No.                                                                                    | Experiment /Practical Exercises                                                          | Appro<br>ximate<br>Hours |  |  |  |
|------------|------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|--------------------------|--|--|--|
| 1          | 1                                                                                              | Know your Physics Laboratory and use of scientific calculator & interpretation of graph. | 2                        |  |  |  |
| 2          | 2                                                                                              | Measure the dimensions of given objects using vernier caliper.                           | 2                        |  |  |  |
| 3          | 3 Determine Young's modulus of elasticity of metal wire by using<br>Searle's apparatus         |                                                                                          | 2                        |  |  |  |
| 4          | 4                                                                                              | Measurement of unknown temperature using platinum resistance thermometer.                | 2                        |  |  |  |
| 5          | 5                                                                                              | To determine critical angle using glass block                                            | 2                        |  |  |  |
| 6          | 6                                                                                              | . Determine coefficient of viscosity of given liquid using Stoke's Method                | 2                        |  |  |  |
| 7          | 7                                                                                              | To determine specific resistance of given wire using Ohm's Law                           | 2                        |  |  |  |
| 8          | 8                                                                                              | To verify the Law of Resistance in series by Meter bridge.                               | 2                        |  |  |  |
| 9          | 9                                                                                              | To study the forward characteristics of P-N junction diode                               | 2                        |  |  |  |
| 10         | 10                                                                                             | To understand the concept of resonance and determine the velocity of sound in air.       | 2                        |  |  |  |
| 11         | 11                                                                                             | Comparison of EMF of two cells using Potentiometer                                       | 2                        |  |  |  |
|            | Micro                                                                                          | Project ( Any one of following will be opted by a group of 5-6 stude                     | ents)                    |  |  |  |
| 1          | Surve                                                                                          | y of different diodes, resistances and capacitance                                       |                          |  |  |  |
| 2          | Prepa                                                                                          | re current and voltage rating of home appliances                                         |                          |  |  |  |
| 3          |                                                                                                | ake the telescope using lenses                                                           |                          |  |  |  |
| 4          | •                                                                                              | se the different toys and watch on the basis of property of Elasticity                   |                          |  |  |  |
| 5          | •                                                                                              | se the different liquidator on the basis of property of surface tension                  |                          |  |  |  |
| 6          | To collect the information from internet regarding distribution of sound at<br>Gowalkonda fort |                                                                                          |                          |  |  |  |
| 7          |                                                                                                | llect the information from internet regarding distribution of sound at numut at Vaijapur |                          |  |  |  |

### 8. SUGGESTED LIST OF PROPOSED STUDENT ACTIVITIES:

Following is the list of proposed student activities

- a. Calculate acoustics of given class room.
- b. Prepare a chart of applications of optical fibre in different fields.
- c. Demonstrate different types of capacitors.
- d. Seminar by student on any relevant topic.

#### 9. SPECIAL INSTRUCTIONAL STRATEGIES:

- a. Search various sites to teach various topics/sub topics.
- b. Instead of the traditional lecture method, use different types of teaching methods such as improved lecture method, question answer method, laboratory method to attained specific outcome.
- c. Some topics are relatively simpler in nature is to be given to the students for selflearning by seminar or by classroom presentations
- d. Teachers provide theme to create multiple choice questions.
- e. Provide super visionary assistance for completion of micro-projects.

#### Hour's distribution for Physics Experiments:

| Sr.<br>No. | Description                                                                                       | Hours |
|------------|---------------------------------------------------------------------------------------------------|-------|
| 1          | An introduction to Physics laboratory and its experiments (for the set of first four experiments) | 02    |
| 2          | Set of first four experiments                                                                     | 08    |
| 3          | An introduction to experiments (for the set of next four experiments)                             | 02    |
| 4          | Set of next four experiments                                                                      | 08    |
| 5          | An introduction to experiments (for the set of next three experiments)                            | 02    |
| 6          | Set of next three experiments                                                                     | 06    |

#### **10. SUGGESTED LEARNING RESOURCES LIST OF BOOKS:**

| Sr No. | Title of Books                 | Author                   | Publication             |
|--------|--------------------------------|--------------------------|-------------------------|
| 1      | Basic Science Physics          | Pawar and Sutar          | Nirali Publication      |
| 2      | Applied Physics                | B.G. Bhandarkar          | Vrunda Publication      |
| 3      | Engineering Physics            | R.K. Gupta and S.L Gupta | Dhanpat Rai Publication |
| 4      | Applied Physics                | Pawar, Umrani and Joshi  | Nirali Publication      |
| 5      | Basic Physics                  | B.G. Bhandarkar, S.N.    | Vrunda Publication      |
|        |                                | Jumde                    |                         |
| 6      | Physics Text Book Part         | NCERT                    | NCERT; 2014 edition     |
|        | -1 for Class - 12              |                          | <b>ISBN-13:</b> 978-    |
|        |                                |                          | 8174506313              |
| 7      | Physics Text Book Part         | NCERT                    | NCERT; 2014 edition     |
|        | -2 for Class - 12              |                          | <b>ISBN-13:</b> 978-    |
|        |                                |                          | 8174506719              |
| 8      | A text book of applied physics |                          | S Chand Publication     |
|        | physics                        |                          |                         |

#### 11. List of Major Equipment/ Instrument :

- 1. Platinum resistance thermometer
- 2. Thermocouple
- 3. Meter bridge
- 4. Potentiometer

### **12. E-learning resources :**

- 1. <u>www.physicsclassroom.com</u> for unit II and unit III
- 2. <u>www.fearofphysics.com</u> for unit III
- 3. www.sciencejoywagon.com/physicszone for unit III and IV
- 4. www.science.howstuffworks.com
- 5. https://phet.colorado.edu/en/simulations/category/physics for unit I, II, III and IV

#### 13. POs and PSOs assignment and its strength of assignment with each CO of the Course:

| CO. | Course Outcome                                     | PO1 | PO2 | PO3 | P04 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PSO1 | PSO2 |
|-----|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| NO. |                                                    | Р   | P   | P   | đ   | P   | Ā   | Ā   | Ρ   | P   | РС   | PS   | PS   |
|     | Student will able to calculate young's modulus     | 3   | 3   | 3   | 2   | -   | 1   | -   | -   | -   | 2    | -    | -    |
| CO1 | ,surface tension and viscosity of different        |     |     |     |     |     |     |     |     |     |      |      |      |
|     | material                                           |     |     |     |     |     |     |     |     |     |      |      |      |
|     | Student will able to demonstrate different         | 3   | 3   | 2   | 2   | -   | 2   | -   | -   | -   | 1    | -    | -    |
| CO2 | properties of heat ,light and sound                |     |     |     |     |     |     |     |     |     |      |      |      |
|     | Student will able to demonstrate different laws    | 3   | 3   | 3   | 3   | -   | 2   | 1   | -   | -   | 1    | -    | -    |
| CO3 | of electric field, charge resistance and           |     |     |     |     |     |     |     |     |     |      |      |      |
|     | capacitance                                        |     |     |     |     |     |     |     |     |     |      |      |      |
|     | Student will able to demonstrate different type of | 3   | 3   | 3   | 3   | -   | 3   | -   | -   | -   | -    | -    | -    |
| CO4 | semiconductors, x-ray and optical fiber knowledge  |     |     |     |     |     |     |     |     |     |      |      |      |
|     | and application                                    |     |     |     |     |     |     |     |     |     |      |      |      |

#### **Course Curriculum Design Committee**

|   | Name of the faculty member | Designation and Institute                              |
|---|----------------------------|--------------------------------------------------------|
| 1 | Mr. V.S Deshmukh           | Lecturer in Physics, Government Polytechnic Aurangabad |
| 2 | Mrs. S.B.Kale              | Lecturer in Physics, Government Polytechnic Aurangabad |
| 3 | Mrs. Z.F.Siddiqui          | Lecturer in Physics, Government Polytechnic Aurangabad |

Member Secretary PBOS

Chairman PBOS

Co-coordinator science and Humanities

# COURSE TITLEENGINEERING MECHANICSCOURSE CODE6Q201

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |  |  |  |  |
|---------------------------------------------------|---------------------------|--|--|--|--|
| Civil/Mechanical/Automobile                       | Second                    |  |  |  |  |

GPA

#### **1. RATIONALE:**

Engineering Mechanics is basic technology course. The purpose of this course is to predict physical phenomena which lay the foundations for engineering applications. By applying Principles of mechanics, Diploma engineers shall be able to analyze the behavior of structural/machine components under the action of various forces. Analysis of components will form basis for design. The Course intends to provide basic understanding about the different types of forces, moments and their effects on structural/machine components. It develops basic analytical abilities.

#### **2. COMPETENCY:**

At the end of studying this course students will be able to,

"Use principles of engineering mechanics to analyze structural/machine components"

#### 3. TEACHING AND EXAMNATION SCHEME:

| Teaching Scheme                   |   | Total   |                    | Exami  | nation Scheme (Marks) |                  |            |     |  |
|-----------------------------------|---|---------|--------------------|--------|-----------------------|------------------|------------|-----|--|
|                                   | U | redits) | Credits<br>(L+T+P) | Theory |                       | Pract            | Total      |     |  |
| L                                 | Т | Р       | С                  | ESE    | РТ                    | ESE @<br>(PR/OR) | PA<br>(TW) | 125 |  |
| 4                                 | - | 2       | 6                  | 80     | 20                    |                  | 25         | 123 |  |
| Duration of the Examination (Hrs) |   |         | 3                  | 1      |                       |                  |            |     |  |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR**- Practical; C-Credits; **ESE**- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal, ~ Online Examination.

### 4. COURSE OUTCOMES :

At the end of studying this course students will be able to: -

- 1. Classify the given force system.
- 2. Suggest the appropriate simple lifting machines for given situations.

GPA

- 3. Check the stability of engineering systems by applying force equilibrium conditions
- 4. Use principles of friction to analyze equilibrium of rigid bodies/simple structures for common engineering situations.
- 5. Locate the Centroid and Centre of gravity of components of engineering systems.

#### **5. DETAILED COURSE CONTENTS:**

| Unit                                       | Major Learning Outcomes<br>(Cognitive Domain Only)                                                                                                                                                                           | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit - I<br>Fundamental<br>Concepts        | <ul> <li>1a. Explain concepts of given terms</li> <li>1b. Classify the given quantities</li> <li>1c. Use Newton's laws of motion in given situations</li> <li>1d. Use law of transmissibility in given situations</li> </ul> | <ul> <li>1.1 Definitions of Mechanics, Applied Mechanics, statics, dynamics, kinematics, kinetics.</li> <li>1.2 Concept of space, time, mass, particle, rigid body.</li> <li>1.3 Scalar and vector quantities with examples,</li> <li>1.4 Newton's laws of motion.</li> <li>1.5 Concept of force, definition, S.I. unit, representation of force as a vector, Bow's notation. Characteristics and effects of forces, Law of transmissibility of force.</li> </ul>                                           |
| Unit – II<br>Simple<br>lifting<br>machines | nple simple lifting machine for the given purpose                                                                                                                                                                            | <ul> <li>2.1 Definition of simple lifting machine, load, effort, mechanical advantages, velocity ratio, input of a machine, output of a machine, efficiency, and relation between MA, VR and efficiency. Ideal machine, ideal effort, ideal load, friction in machine, effort lost in friction, load lost in friction.</li> <li>2.2 Law of simple machine, maximum mechanical advantage, and efficiency, reversibility of machine, condition for reversibility of machine, self-locking machine.</li> </ul> |
|                                            |                                                                                                                                                                                                                              | 2.3 Velocity ratio (No derivation) for Worm<br>and worm wheel, differential axle and<br>wheel, Single/double purchase crab, Simple<br>screw jack, Two and three sheave pulley<br>block, Weston's differential pulley block.                                                                                                                                                                                                                                                                                 |
|                                            |                                                                                                                                                                                                                              | <ul> <li>2.4 Numerical problems based on the above machines as mentioned in article 2.3</li> <li>2.5 Graphs of Load V<sub>S</sub> Effort, Load V<sub>S</sub> ideal</li> </ul>                                                                                                                                                                                                                                                                                                                               |

|                                 |                                                                                              | effort, Load V <sub>s</sub> Effort lost in friction, Load                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                                                                              | $V_S$ M.A., Load $V_S$ Efficiency                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Unit - III<br>Resolution<br>and | <ul><li>3a. Resolve the given<br/>single force.</li><li>3b. Determine analytically</li></ul> | 3.1 Concept of system of forces: Coplanar,<br>Non coplanar, collinear, concurrent, non-<br>concurrent, parallel (like & unlike).                                                                                                                                                                                                                                                                                                                        |
| composition                     | resultant of given force                                                                     | 3.2 Resolution of a force – Orthogonal and non                                                                                                                                                                                                                                                                                                                                                                                                          |
| of coplanar<br>forces           | system.<br>3c. Determine graphically<br>resultant of the given<br>force system.              | orthogonal components<br>3.3 Composition of forces, definition of<br>resultant, Law of parallelogram of forces<br>and Law of polygon of forces.                                                                                                                                                                                                                                                                                                         |
|                                 |                                                                                              | 3.4 Determination of resultant of collinear and concurrent force system analytically.                                                                                                                                                                                                                                                                                                                                                                   |
|                                 |                                                                                              | 3.5 Moment of a force, magnitude, lever arm,<br>types and sign convention,. Law of<br>moment, Varignon's theorem, Couple,<br>characteristics of couple with examples.                                                                                                                                                                                                                                                                                   |
|                                 |                                                                                              | 3.6 Resultant of parallel force system and non-<br>concurrent, non-parallel force system by<br>analytical method.                                                                                                                                                                                                                                                                                                                                       |
|                                 |                                                                                              | 3.7 Resultant of parallel and concurrent coplanar force system by graphical method                                                                                                                                                                                                                                                                                                                                                                      |
| Unit - IV                       | 4a. Draw free body                                                                           | 4.1 Equilibrium and equilibrant, relation                                                                                                                                                                                                                                                                                                                                                                                                               |
| Equilibrium                     | diagram (F.B.D.) of a                                                                        | between resultant and equilibrant.                                                                                                                                                                                                                                                                                                                                                                                                                      |
| of coplanar                     | rigid body / object for                                                                      | 4.2 Concept of free body, free body diagram,                                                                                                                                                                                                                                                                                                                                                                                                            |
| forces                          | <ul><li>the given situation.</li><li>4b. Use Lami's theorem in given situation.</li></ul>    | Conditions of equilibrium for collinear,<br>concurrent, parallel & non concurrent non<br>parallel force systems.                                                                                                                                                                                                                                                                                                                                        |
|                                 | 4c. Determine analytically                                                                   | 4.3 Lami's Theorem and its applications such                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                 | reactions for the given type of beam.                                                        | as cables. Lami's theorem problems with two unknowns only.                                                                                                                                                                                                                                                                                                                                                                                              |
|                                 | 4d. Determine graphically<br>reactions for the given<br>simply supported<br>beam.            | <ul> <li>4.4 Beam-Definition, types of beam: cantilever, simply supported, over hanging, continuous, fixed beams. Types of supports: simple, fixed, hinged and roller. Types of load- point load (vertical and incline), uniformly distributed load, couple.</li> <li>4.5 Beam reactions for cantilever, simply supported beam with or without overhang-subjected to combination of point load and U.D.L. or vertical point load and couple.</li> </ul> |

| [            |                           | AC Hoing anophical mathed determine house                                         |
|--------------|---------------------------|-----------------------------------------------------------------------------------|
|              |                           | 4.6 Using graphical method determine beam reactions for the simply supported beam |
|              |                           | (without overhang) subjected to vertical                                          |
|              |                           | load and U.D.L.                                                                   |
| TT '4 T7     | 5 D (                     |                                                                                   |
| Unit - V     | 5a. Determine frictional  | 5.1 Concept and definition of friction,                                           |
| Friction     | force, coefficient of     | Advantages and disadvantages of friction.                                         |
|              | friction and unknown      | Types of friction (static, dynamic, rolling,                                      |
|              | forces acting on          | sliding), laws of friction, Definition of co-                                     |
|              | body(s) for the given     | efficient of friction, angle of friction, angle                                   |
|              | situation.                | of repose and relation between angle of                                           |
|              | 5b. Determine frictional  | friction and angle of repose.                                                     |
|              | force, coefficient of     | 5.2 Equilibrium of bodies on level plane                                          |
|              | friction unknown          | subjected horizontal & incline force (pull                                        |
|              | forces acting on ladder   | and push).                                                                        |
|              | in given situation.       | 5.3 Equilibrium of bodies on inclined plane                                       |
|              |                           | subjected to parallel & incline force (pull                                       |
|              |                           | and push).                                                                        |
|              |                           | 5.4 Ladder friction. (With one surface smooth)                                    |
| Unit - VI    | 6a. Determine centroid of | 6.1 Centroid- Definition, Centroid of                                             |
| Centriod and | the given composite       | geometrical plane figures- triangle, square,                                      |
| Center of    | lamina.                   | rectangle, circle, semicircle, quarter circle.                                    |
| gravity      | 6b. Determine center of   | 6.2 Determination of centroid of composite                                        |
|              | gravity of the given      | figures composed of not more than three                                           |
|              | composite solids.         | geometrical regular figures.                                                      |
|              |                           | 6.3 Center of gravity- Definition, C.G. of                                        |
|              |                           | simple regular solids- cube, cylinder, cone,                                      |
|              |                           | sphere, hemisphere                                                                |
|              |                           | 6.4 Determination of C.G. of composite solid                                      |
|              |                           | composed of not more than two regular                                             |
|              |                           | solids                                                                            |
|              |                           |                                                                                   |
|              |                           |                                                                                   |

## 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

GPA

|            |                                               |    | Distribution Of Theory Marks |            |            |       |  |  |  |
|------------|-----------------------------------------------|----|------------------------------|------------|------------|-------|--|--|--|
| Unit<br>No | Title Of Unit Teaching Hours                  |    | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |  |  |
| Ι          | Fundamental Concepts                          | 02 | 04                           |            |            | 04    |  |  |  |
| II         | Simple lifting machine                        | 12 | 02                           | 04         | 06         | 12    |  |  |  |
| III        | Resolution and composition of coplanar forces | 14 | 04                           | 08         | 06         | 18    |  |  |  |
| IV         | Equilibrium of coplanar forces                | 14 | 04                           | 06         | 08         | 18    |  |  |  |
| V          | Friction                                      | 12 | 04                           | 04         | 08         | 16    |  |  |  |
| VI         | Centroid and center of gravity                | 10 | 02                           | 04         | 06         | 12    |  |  |  |
|            | Total                                         | 64 | 20                           | 26         | 34         | 80    |  |  |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

## 7. LIST OF PRACTICAL / LABORATORY EXPERIMENTS/ TUTORIALS :

| Sr.<br>No. | Unit                                                                               | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                           | Hours |
|------------|------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|-------|
|            | Practical                                                                          | performance on any three lifting machines from 1 to 5                                                        |       |
| 1          | II                                                                                 | Use differential axle and wheel to establish law of machine and find maximum efficiency                      | 04    |
| 2          | 2 II Use simple screw jack to establish law of machine and find maximum efficiency |                                                                                                              | 04    |
| 3          | II                                                                                 | Use single or double purchase crab to establish law of machine and find maximum efficiency                   | 04    |
| 4          | II                                                                                 | Use two sheave or three sheave pulley block to establish<br>law of machine and find maximum efficiency       | 04    |
| 5          | II                                                                                 | Use Weston's differential pulley to establish law of machine and find maximum efficiency                     | 04    |
| 6          | III                                                                                | Use force table to determine resultant of coplanar concurrent force system applying law of polygon of forces | 04    |

| 7  | III      | Use law of moment apparatus to determine unknown                             | 02 |  |  |  |  |  |
|----|----------|------------------------------------------------------------------------------|----|--|--|--|--|--|
|    |          | forces.                                                                      |    |  |  |  |  |  |
| 8  | IV       | Use force table to find unknown forces by applying                           | 02 |  |  |  |  |  |
|    |          | Lami's theorem.                                                              |    |  |  |  |  |  |
| 9  | IV       | Use beam reaction apparatus to check equilibrium of                          | 02 |  |  |  |  |  |
|    |          | parallel forces.                                                             |    |  |  |  |  |  |
| 10 | V        | Use friction apparatus to determine coefficient of friction                  | 04 |  |  |  |  |  |
|    |          | for motion on horizontal plane (for two pairs of different contact surfaces) |    |  |  |  |  |  |
| 11 | V        | Use friction apparatus to determine coefficient of friction                  | 04 |  |  |  |  |  |
|    |          | for motion on incline plane (for two pairs of different                      |    |  |  |  |  |  |
|    |          | contact surfaces)                                                            |    |  |  |  |  |  |
| 12 | VI       | Determine centroid of geometrical plane figures                              | 02 |  |  |  |  |  |
|    | TOTAL 32 |                                                                              |    |  |  |  |  |  |

#### 8. SUGGESTED STUDENTS ACTIVITIES:

Other than class room and laboratory activities following are the suggested co-curricular students activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences.

| SR. NO. | ACTIVITY                                                                         |
|---------|----------------------------------------------------------------------------------|
| 1       | Collect photographs of concurrent ,Parallel, general force system in equilibrium |
| 2       | Illustrate practical situations where friction is essential and not essential    |
| 3       | For given situations(three) suggest appropriate simple lifting machine           |
| 4       | Collect photographs where hinge, roller and fixed supports are used.             |
| 5       | Prepare model of irregular geometrical figure and locate it's centroid           |

## 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES:

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration.
- d. Activity based learning.

f. Use of video, animation films to explain concepts, facts and applications of mechanics.

| <b>10. SUGGESTED I</b> | LEARNING RESOURCE: |
|------------------------|--------------------|
|------------------------|--------------------|

| S.No. | Name of Book                                     | Author                       | Publication                                                  |
|-------|--------------------------------------------------|------------------------------|--------------------------------------------------------------|
| 1     | Applied Mechanics                                | R. S. Khurmi                 | Dhanpat Rai & Sons, Delhi.                                   |
| 2     | Engineering Mechanics                            | S. S. Bhavikatti             | I. K. International Publishing<br>House Pvt. Ltd., New Delhi |
| 3     | Engineering Mechanics<br>(Static and Dynamics)   | A. Nelson                    | Tata McGraw Hill Co., Delhi.                                 |
| 4     | Fundamental of Applied<br>Mechanics (SI Version) | Dadhe, Jamdar,<br>Walavalkar | Sarita Prakashan, Pune                                       |
| 5     | Engineering Mechanics                            | Dr.S. M. Dumne               | Nikita Publication, Latur.                                   |
| 6     | Engineering Mechanics                            | Dr.Abhishek Jain             | Invincible Publishers                                        |
| 7     | Engineering Mechanics                            | Dr.R.K.Bansal                | Laxmi Publication,ISBN-978-<br>81-318-0078-2                 |

#### **11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :**

| Sr.<br>No. | Name of equipment       | Brief specification                                                                                                                                                                                                                            |
|------------|-------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Universal Force Table   | A circular 40 cm diameter aluminum disc, graduated<br>into 360 degrees. Leveling screws clamping devices to<br>fix the table to desired angle, six sliding clamp pulleys,<br>control ring, string and six sets of iron nickel slotted<br>weigh |
| 2          | Law of moment apparatus | A stainless steel graduated beam 12.5 mm square in section, 1m long, pivoted at center. The top of beam is provided with notches at the interval of 10mm for carrying hanger weights with spirit bubble level tube                             |

|   |                               | with necessary slotted weights, hanger                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|---|-------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| 3 | Beam reaction apparatus       | Two circular dial type 10 kg, extension spring balances<br>or tube in tube type. Complete with suitable stands, a<br>wooden beam with scale and slots at regular intervals,<br>four stirrups with hooks and necessary slotted weights,<br>hanger                                                                                                                                                                                |  |  |  |  |  |  |  |
| 4 | Friction apparatus            | Base to which a sector with graduated arc and vertical scale is provided. The plane may be clamped at any angle up to 45 degrees. A 5 cm diameter friction less pulley is attached to the end by means of a clamp adjustable to any necessary position. Two weight boxes 01 of 5 gm,01 of 10 gm, 02 of 20 gm, 02 of 50 gm, 02 of 100 gm weight, Boxes each weighing 300 gm with 8 mm ply case and bottom of different surfaces. |  |  |  |  |  |  |  |
| 5 | Simple screw jack             | Screw of pitch of 5mm carrying a double flanged turn<br>table 20 cm diameter fitted on steel base and two<br>adjustable pulleys, cords and hooks.                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |  |
| 6 | Worm and worm wheel           | Threaded spindle, load drum, effort wheel; necessary slotted weights, hanger and thread                                                                                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |  |
| 7 | Weston's differential pulley  | Two pulleys; one bigger and other smaller. Both<br>pulleys are rigidly fixed to each other with same center<br>and mounted on same shaft. They have cogs around<br>periphery and having continuous chain passing around<br>these pulleys along with snatch block.                                                                                                                                                               |  |  |  |  |  |  |  |
| 8 | Differential axle and wheel   | A wheel of 40 cm diameter and axles are of different<br>diameter 20 cm and 10 cm giving a ratio of 1:2:4 ;<br>with common axis and supported on ball bearings in<br>iron brackets, necessary slotted weights, hanger and<br>thread.                                                                                                                                                                                             |  |  |  |  |  |  |  |
| 9 | Single purchase winch<br>crab | Effort wheel of C.I. material having 25 cm diameter<br>mounted on a shaft of about 40mm diameter on the<br>same shaft, a geared wheel of 15 cm diameter is<br>mounted. The teeth of pinion wheel shall mesh with<br>spur toothed wheel of 30 cm diameter is mounted on<br>another axle to which load drum of about 7.5 cm<br>diameter, necessary slotted weights, hanger and                                                    |  |  |  |  |  |  |  |

|    |                                              | thread)                                                                                                                                                                     |
|----|----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10 | Double purchase winch<br>crab                | A winch having assembly same as that of single<br>purchase crab winch except an additional set of<br>gearing arrangement.                                                   |
| 11 | Two sheave and three<br>sheave pulley blocks | Double sheave pulley blocks of diameter 65-205<br>mm,ropediameter10-40 mm and carrying maximum<br>safe working load 500kg<br>Triple sheave pulley blocks of diameter 65-205 |
|    |                                              | mm,rope diameter 10-40 mm and carrying maximum safe load 3600kg                                                                                                             |

## **12. LEARNING WEBSITE & SOFTWARE:**

- i. <u>www.youtube.com</u>(www.youtube.com/watch?v=TkXAJHitPAY, www.youtube.com/channel/UChqgQknjcmAsjosqac1uLqA, www.youtube.com/watch?v=4VIhh6sGkrI,www.youtube.com/watch?v=r3Ru1zZjvu, <u>www.youtube.com/watch?v=Vs3XfnhyGHc</u>)forvideosregarding simple lifting machines and friction
- ii. <u>www.nptel.ac.in:for learning materials with audio and video in technical education</u>
- iii. www.discoveryforengineers.com

## 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs) :

| Sr.<br>No | Course Outcome                                                                                             | POs |   |   |   |   |   |   |   |   |    | PSOs |    |
|-----------|------------------------------------------------------------------------------------------------------------|-----|---|---|---|---|---|---|---|---|----|------|----|
| INO       |                                                                                                            | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 01   | 02 |
| 1         | Classify the given force system.                                                                           | 3   | 2 | 1 | 1 | - | - | - | - | - | -  | -    | -  |
| 2         | Select the appropriate<br>simple lifting<br>machines for given<br>situations.                              | 2   | 2 | 3 | 2 | - | - | - | - | - | -  | -    | -  |
| 3         | Check the stability of<br>engineering systems<br>by applying force<br>equilibrium conditions               | 2   | 3 | 2 | 1 | - | - | - | - | - | -  | -    | -  |
| 4         | Use principles of<br>friction to analyze<br>equilibrium of rigid<br>bodies/simple<br>structures for common | 2   | 3 | 2 | 1 | - | - | - | - | - | -  | -    | -  |

|   | engineering situations.                                                                  |   |   |   |   |   |   |   |   |   |   |   |   |
|---|------------------------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | Locate the Centroid<br>and Centre of gravity<br>of components of<br>engineering systems. | 2 | 2 | 3 | 2 | - | - | - | - | - | - | - | - |

## **Course Curriculum Design Committee:**

| Sr<br>No | Name of the faculty members | Designation and Institute                                           |
|----------|-----------------------------|---------------------------------------------------------------------|
| 1        | Madhuri Ganorkar            | Head of Applied Mechanics Department, Govt. Polytechnic, Aurangabad |
| 2        | Ganesh Kechkar              | Lecturer in Applied Mechanics, Govt. Polytechnic, Aurangabad        |
| 3        | Rajesh Aghav                | Lecturer in Applied Mechanics, Govt. Polytechnic, Aurangabad        |
| 4        | Dr.Shivaji Dumne            | Lecturer in Applied Mechanics, Govt. Polytechnic, Aurangabad        |

(Member Secretary PBOS)

(Chairman PBOS)

COURSE TITLE ENGINEERING MATHEMATICS

COURSE CODE 6G102

| Diploma program in which course is offered | Semester in which course is offered |
|--------------------------------------------|-------------------------------------|
| CE/ME/EE/ET/IT/CO/AE                       | Second Semester                     |

#### **1. RATIONALE:**

Engineering Mathematics forms foundation to understand basic principles of Engineering Mathematics to solve engineering problems. This subject is an extension of Basic Mathematics which deals with calculus, differentiation, integration, differential equations etc. which have applications in several engineering courses of various programmes. This course aims at multi-dimensional logical thinking and reasoning capabilities of the students.

#### **2.COMPETENCY STATEMENT:**

At the end of studying this course students will be able to

"Solve engineering problems using the principles of applied mathematics."

#### **3. COURSE OUTCOMES**

Students will be able to

- 1. Differentiate the various function using different rules
- 2. Apply rules of derivatives to solve engineering problems.
- 3. Apply rules of integration to solve engineering problems.
- 4. Solve the various types of differential equations.
- 5. Apply principles of central tendencies for quality assurance in engineering field

#### 4. TEACHING AND EXAMINATION SCHEME

|            | Teaching<br>scheme |    | 0       |              | Examination scheme |                    |    |             |  |  |  |
|------------|--------------------|----|---------|--------------|--------------------|--------------------|----|-------------|--|--|--|
| (In hours) |                    | -  | (L+T+P) | Theory Marks |                    | Practical<br>marks |    | Total Marks |  |  |  |
| L          | Т                  | Р  | С       | ESE          | РТ                 | ESE                | PA |             |  |  |  |
| 03         | 01                 | 00 | 04      | 80           | 20                 |                    |    | 100         |  |  |  |
|            | Exam Duration      |    |         | 3 Hrs        | 1 Hr.              |                    |    |             |  |  |  |

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR- Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

## 5. CORSE DETAIL:

| Unit                                      | Major Learning                                                                                                 | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                           | Outcomes                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| UNIT -I<br>Derivatives                    | 1a.Differentiate various<br>engineering functions                                                              | <ul> <li>1.1 Definition of derivative, notation.</li> <li>1.2 Derivative of standard functions.</li> <li>1.3 Rules of Differentiation (without proof) such<br/>as sum, difference, product and quotient.</li> <li>1.4 Derivative of composite functions.</li> <li>1.5 Derivative of inverse trigonometric functions.</li> <li>1.6 Derivative of implicit functions.</li> <li>1.7 Derivative of parametric functions.</li> <li>1.8 Logarithmic differentiation.</li> <li>1.9 Second order derivatives.</li> </ul> |
| UNIT- II<br>Applications<br>of derivative | 2a.Apply derivatives tofindVelocity,AccelerationandMaxima & Minima                                             | 2.2 Maxima & minima.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| UNIT -III<br>Integration                  | 3a.Integrate various<br>Functions using<br>appropriate methods.                                                | <ul> <li>3.1 Definition of integration.</li> <li>3.2 Integration of standard function.</li> <li>3.3 Rules of Integration: sum, difference &amp; multiplication.</li> <li>3.4 Methods of Integration <ul> <li>3.4.1 Integration by substitution.</li> <li>3.4.2 Integration by partial fraction.</li> <li>3.4.3 Integration by parts.</li> </ul> </li> <li>3.5 Definition of Definite integral.</li> <li>3.6 Simple problems on definite integral</li> </ul>                                                      |
| UNIT- IV<br>Differential<br>Equations     | 4a.Solve various types of differential equations.                                                              | <ul> <li>4.1 Definition of differential equation, order &amp;degree.</li> <li>4.2 Formation of differential equation.</li> <li>4.3 Solution of Diff. equation.</li> <li>4.4.1 variable separable.</li> <li>4.4.2 Homogeneous equation.</li> <li>4.4.3 Exact diff. equation.</li> <li>4.4.4 Linear diff. equation.</li> </ul>                                                                                                                                                                                     |
| UNIT -V<br>Statistics                     | <ul><li>5a.Measure Central</li><li>Tendencies</li><li>5b. Measure Dispersion</li><li>for given data.</li></ul> | <ul> <li>5.1 Graphical representation: Histogram &amp; o-give curve to find Mode and median.</li> <li>5.2 Measures of dispersion : Range, mean deviation and Standard deviation.</li> </ul>                                                                                                                                                                                                                                                                                                                      |

## GPA

|           | -                          |          |                              |                         |                    |       |  |  |  |  |
|-----------|----------------------------|----------|------------------------------|-------------------------|--------------------|-------|--|--|--|--|
| Sr        |                            | Teaching | Distribution of Theory Marks |                         |                    |       |  |  |  |  |
| Sr,<br>No | Title/Topic                | Hours    | Remembrance levels           | Understanding<br>levels | Application levels | Total |  |  |  |  |
| 1         | Derivative                 | 12       | 2                            | 08                      | 08                 | 18    |  |  |  |  |
| 2         | Applications of derivative | 04       | 00                           | 04                      | 08                 | 12    |  |  |  |  |
| 3         | Integration                | 16       | 06                           | 08                      | 12                 | 26    |  |  |  |  |
| 4         | Differential<br>Equations  | 10       | 04                           | 04                      | 08                 | 16    |  |  |  |  |
| 5         | Statistics                 | 06       | 02                           | 02                      | 04                 | 08    |  |  |  |  |
|           | TOTAL                      | 48       | 14                           | 26                      | 40                 | 80    |  |  |  |  |

#### 6. SUGGESTED SPRCIFICATION TABLE WITH HOURS AND MARKS

#### (THEORY)

#### 7. SUGGESTED LIST OF TUTORIAL

- 1) The exercises should be properly designed and implemented with an attempt to develop different types of skills leading to the achievement of the competency
- 2) Form a batch of 20 students and at least **ten** problems should be given to get necessary exercise.
- 3) Course faculty will provide programme related problems.

| Sr.<br>No. | Title/Topic                | Exercises/Tutorial                           | Approx.<br>hours |
|------------|----------------------------|----------------------------------------------|------------------|
| 1          | Derivative                 | Solve problems related to various            | 03               |
|            |                            | methods/techniques of differentiations       |                  |
| 2          | Applications of derivative | Calculate Engineering Applications of        | 03               |
|            |                            | Tangent, normal, maxima, minima and Radius   |                  |
|            |                            | of curvature from respective programmes.     |                  |
| 3          | Integration                | Solve problems Related to Various            | 04               |
|            |                            | Methods/Techniques of integration            |                  |
| 4          | Differential Equations     | Solve problems Related to Various            | 04               |
|            | -                          | Methods/Techniques of Differential equation. |                  |
| 5          | Statistics                 | Solve examples of Comparative data. Plot     | 02               |
|            |                            | different types of graph.                    |                  |

#### 8. SUGGESTED STUDENT ACTIVITIES Following is the list of proposed student activities like:

Other than the classroom learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course:

- a. Collect the mathematical derivation based on curriculum from respective programme.
- b. Identify mathematical problems related to respective programme and get them solved.
- c. Find graphical software using internet and list them.
- d. Identify problems based on applications of differential equations and solve these problems.
- e. Prepare a seminar on any relevant topic based on curriculum.

#### 9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

These are sample strategies, which the teacher can use to accelerate the attainment of the various outcomes in this course

a. Use open resources available on internet to teach Engineering Mathematics.

b. Apply the mathematical concepts learnt in this course to branch specific problems.

c. Use different instructional strategies in classroom teaching.

#### **10. SUGGESTED LEARNING RESOURCES**

| Sr. | Title                                    | Author           | Publication         |
|-----|------------------------------------------|------------------|---------------------|
| No. |                                          |                  |                     |
| 1.  | Mathematics for polytechnic students for | S. P. Deshpande  | Pune vidhyarti gruh |
| 1.  | second Year                              |                  | prakshan Pune       |
| 2.  | Applied Mathematics                      | By Patel & Rawal | Nirali prakashan    |
| Ζ.  |                                          |                  | Mumbai              |
|     | Mathematics for polytechnic students for |                  | Phadke prakashan    |
| 3   | second year                              | G.V.Kumbhojkar   | Kholapur            |
|     |                                          |                  |                     |

#### 11. MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS

| Sr. No. | Name of the Equipment | Specification |
|---------|-----------------------|---------------|
| 1       | NA                    |               |
|         |                       |               |

#### 12. SOFTWARE/LEARNING WEBSITES

\_\_\_\_\_

#### 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO.<br>No. | Course Outcome                                                                                         | PO1 | PO2 | PO3 | PO4 | PO5 | P06 | PO7 | PO8 | PO9 | PO10 | PSO1 | PSO2 |
|------------|--------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | Students will be able to differentiate<br>the various function using different<br>rules                | 2   | 3   | 1   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO2        | Students will be able to apply the<br>differentiation to Velocity,<br>Acceleration and Maxima & Minima | -   | -   | 1   | 1   | 1   | 1   | 1   | 1   | -   | 1    | -    | -    |
| CO3        | Students will be able to so Integrate<br>the various Function using different<br>methods               | 3   | 3   | -   | -   | -   | -   | -   | -   | _   | -    | _    | -    |
| CO4        | Students will be able to solve the various types of differential equation using different methods.     | 1   | 1   | 3   | -   | -   | -   | -   | -   | -   | -    | -    | -    |
| CO5        | Students will be able to Measure<br>Central tendency and Measure<br>Dispersion in given data           | -   | 1   | 1   | -   | 1   | -   | -   | -   | -   | -    | -    | -    |

#### COURSE CURRICULUM DEVELOPMENT COMMITTEE

- Sr. Name of the faculty Designation and Institute No. member
- 1 Mr. M.A. Ali Lecturer in Mathematics, Government Polytechnic, Aurangabad
- 2 Mr. R.B. Borulkar Lecturer in Mathematics, Government Polytechnic, Aurangabad
- 3 Mrs. H.H. Bhumkar Lecturer in Mathematics, Government Polytechnic, Aurangabad

Member Secretary PBOS

**Chairman PBOS** 

Co-ordinator science and Humanities

# COURSE TITLECOMMUNICATION SKILLSCOURSE CODE6G302

| Diploma Programme in which this course is offered     | Semester in which<br>offered |
|-------------------------------------------------------|------------------------------|
| All Branches of Diploma in Engineering and Technology | Second Semester              |

#### 1. RATIONALE

Proficiency in communication skills is one of the prime needs of diploma engineer/ technician who has to communicate all the time with peers, superiors, sub-ordinates and clients in his professional life. The need of acquiring effective communication skills is more essential. As the world is shrinking into a global village with the new technologies, technically sound diploma holders may be a quality human resource, if their communicative abilities are shaped properly. Therefore, this course is designed to develop the ability of students to stand as a skilled and effective communicator with employability skills.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Communicate effectively at workplaces."

#### 3. TEACHING AND EXAMINATION SCHEME

| Teaching Scheme Total |        |         | Examination Scheme |        |                            |         |             |       |
|-----------------------|--------|---------|--------------------|--------|----------------------------|---------|-------------|-------|
| (]                    | In Hou | urs)    | Credits            | Theory | eory Marks Practical Marks |         | Total Marks |       |
|                       |        | (L+T+P) |                    |        |                            |         |             |       |
| L                     | Т      | Р       | С                  | ESE PT |                            | ESE(OR) | PA          |       |
|                       |        |         |                    |        |                            |         |             | TOTAL |
|                       |        |         |                    |        |                            |         |             | MARKS |
| 1                     | -      | 2       | 3                  | -      | -                          | 25@     | 50          | 75    |
| Exam Duration         |        |         |                    | -      | -                          | -       | -           |       |

(\*): Out of 50 marks, 10 marks -micro-project assessment; 40 marks-progressive assessments
 Legends: L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit,
 ESE -End Semester Examination; PA - Progressive Test; OR-Oral examination

#### 4. COURSE OUTCOMES

- 1. Express new ideas effectively.
- 2. Select suitable type of communication in different situations.
- 3. Avoid communication barriers for effective communication.
- 4. Use appropriate body language to communicate effectively.
- 5. Formulate various ways to face interview effectively.
- 6. Draft different types of business letters, notices, memoranda and E-mails using correct formats.

## 5. COURSE DETAILS

| Unit            | Major Learning Outcomes               | Topics and Sub-topics           |
|-----------------|---------------------------------------|---------------------------------|
|                 | (in cognitive domain)                 |                                 |
| UNIT-I          | 1a. Describe significance of          | 1.1. Definition, importance     |
| Introduction to | Communication.                        | 1.2. Communication cycle /      |
| communication   | 1b. Describe the elements of          | process                         |
|                 | communication.                        | 1.3. Elements of Communication  |
|                 | 1c. Explain the cycle & process of    |                                 |
|                 | communication.                        |                                 |
|                 | 1d. Identify the various              |                                 |
|                 | communication situations.             |                                 |
| UNIT-II         | 2a.Identify the types of              | 2.1. Verbal-nonverbal, formal-  |
| Types of        | communication.                        | informal, upward-downward,      |
| communication   | 2b.Explain the types of               | horizontal-diagonal             |
|                 | communication.                        | communication                   |
| UNIT -III       | 3a.Explain the principles of          | 3.1.Effective Communication     |
| Principles of   | communication.                        | 3.2.Barriers to communication & |
| effective       | 3b.Illustrate principles of effective | ways to overcome them           |
| communication   | communication.                        |                                 |
|                 | 3c. Describe communication            |                                 |
|                 | barriers.                             |                                 |
|                 | 3d. Identify the types of             |                                 |
|                 | communication barriers.               |                                 |
|                 | 3e. Select ways to overcome           |                                 |
|                 | communication barriers.               |                                 |
| UNIT-IV         | 4a. Understanding non-verbal          | 4.1.Non-verbal codes            |
| Non -Verbal     | communication.                        | 4.2.Aspects of body language    |
| Communication   | 4b. Know the uses of body             | 4.3. Pictorial representation   |
|                 | language.                             |                                 |
|                 | 4c. Uses of pictorial                 |                                 |
|                 | representations.                      |                                 |
| UNIT –V         | 5a. Listening& comprehending          | 5.1.Listening skills            |
| Interview       | the passage.                          | 5.2.Stress management           |
| Techniques      | 5b. Having presence of mind.          | 5.3.facing oral communication   |
|                 | 5c. Managing stress.                  |                                 |
|                 | 5d. Facing viva.                      |                                 |
| UNIT-VI         | 6a. Correct format with correct       | 6.1.Business Letters: Enquiry,  |
| Formal Written  | language.                             | Order, Complaint, Adjustment,   |
| Skills          | 6b. Identify the types of letters.    | Seeking Permission etc.         |
|                 | 6c.Applying different techniques      | 6.2 Report writing.             |
|                 | of drafting reports.                  |                                 |

| 6. | SUGGESTED | SPECIFICATION | TABLE | WITH | HOURS | AND | MARKS |
|----|-----------|---------------|-------|------|-------|-----|-------|
|    | (THEORY)  |               |       |      |       |     |       |

| Unit | Unit Title                                  | Teaching | Dis   | stribution o | of Theory N | Marks |
|------|---------------------------------------------|----------|-------|--------------|-------------|-------|
| No.  |                                             | Hours    | R     | U            | Α           | Total |
|      |                                             |          | Level | Level        | Level       | Marks |
| Ι    | Introduction to<br>Communication            | 03       | NA    | NA           | NA          | NA    |
| II   | Types of communication                      | 02       | NA    | NA           | NA          | NA    |
| III  | Principles of<br>Effective<br>Communication | 03       | NA    | NA           | NA          | NA    |
| IV   | Non-verbal communication                    | 03       | NA    | NA           | NA          | NA    |
| V    | Interview<br>Techniques                     | 02       | NA    | NA           | NA          | NA    |
| VI   | Formal written<br>skills                    | 03       | NA    | NA           | NA          | NA    |
|      | Total                                       | 16       | NA    | NA           | NA          | NA    |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

## 7. SUGGESTED EXERCISES/PRACTICALS

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive, psycho-motor and affective domain**) so that students are able to acquire the competencies.

| S.  | Unit No. | Practical Exercises                          | Approx. Hrs. |
|-----|----------|----------------------------------------------|--------------|
| No. |          | (Outcomes in Psychomotor Domain)             | required     |
| 1   | Ι        | Identify the elements of communication       | 02           |
|     |          | cycle with two suitable examples.            |              |
|     | II       | Identify the types of communication with     | 02           |
|     |          | two suitable examples.                       |              |
| 2   | II       | Deliver a prepared speech.                   | 02           |
|     | II       | Deliver an extempore speech.                 | 02           |
| 3   | III      | Present a role-play in a group.              | 02           |
|     | III      | Present a role-play individually.            | 02           |
| 4   | III      | Present a group discussion on current issues | 02           |
|     |          | and summarize it.                            |              |
|     | III      | Present a debate on a given topic.           | 02           |
| 5   | II&IV    | Prepare a power point presentation on any    | 02           |
|     |          | one technical topic.                         |              |
|     | II&IV    | Prepare a power point presentation on any    | 02           |

|   |     | one non-technical topic.                |    |
|---|-----|-----------------------------------------|----|
| 6 | III | Demonstrate any assigned activity using | 02 |
|   |     | appropriate body language.              |    |
|   | III | Demonstrate any self activity using     | 02 |
|   |     | appropriate body language.              |    |
| 7 | III | Self introduction for an interview.     | 02 |
|   | III | Face a mock-interview.                  | 02 |
| 8 | IV  | Write a job application letter in an    | 02 |
|   |     | appropriate format.                     |    |
|   | IV  | Draft a report on a given topic.        | 02 |
|   |     | Total                                   | 32 |

### 8. SUGGESTED STUDENT ACTIVITIES

Following is the list of proposed student activities:

- a. List the different communication situations.
- b. Use audio visual aids to learn different skills in communication.
- c. Conversations –formal/informal.
- d. Read newspaper.
- e. Collect different audio clips.
- f. SWOT analysis.
- g. Deliver welcome/farewell speeches in various programmes.
- h. Use of graphics in technical writings.
- i. Interviewing common people.
- j. Debating practices.
- k. Summarizing discussions.
- 1. Practicing interviews

#### 9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

- a. Arrange various debate/elocution competitions to develop spoken communication skills.
- b. Show audio/video clips to develop listening skills.
- c. Collect various pictures/charts to demonstrate body language.
- d. Prepare and give oral presentations.
- e. Guide micro-projects in groups as well as individually.

#### 10. SUGGESTED TITLES OF MICRO PROJECTS

A micro-project is planned to be undertaken by a student. He/she ought to submit it by the end of the semester to develop the industry oriented COs. The micro-project could be industry application-based, internet-based, workshop-based, laboratory-based or field-based. Each student will have to maintain dated work diary consisting of individual contribution in the project work and give a seminar presentation of it before submission. A suggestive list is given here. Similar micro-projects could be added by the concerned faculty:

- a. Find out five communication events from day to day life and explain them in the form of communication process.
- b. Find out various reasons of communication gap in certain official situations.

- c. Identify various types of communication situations in student's life.
- d. Study various barriers occurring in communication among diploma students.
- e. Find out the remedies to overcome psychological barriers in communication.
- f. Collect different types of letters and analyze the language and format used in it.
- g. Prepare a review on the listened story/news/discussion/meeting.

## 11. SUGGESTED LEARNING RESOURCES

| Sr.No. | Title of Book            | Author         | Publication          |
|--------|--------------------------|----------------|----------------------|
| 1.     | Business Communication   | R.C.Bhatiya    | Ane Books India, New |
|        |                          |                | Delhi.               |
| 2.     | Developing Communication | Krishna Mohan& | Macmillan            |
|        | Skills                   | Meera Banerjee |                      |
| 3.     | Power Point Presentation | Adam B Cooper  | Macmillan            |
|        |                          |                |                      |
| 4.     | Group Discussions &      | Dr.B.R.Kishor& | Vee Kumar            |
|        | Interviews               | D. S.Paul      |                      |
| 5.     | Body Language            | Allan Pease    | Sheldon Press,       |
|        |                          |                | London.              |

#### 12.MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS

| Sr.No. | Name of the Equipment                 | Specification |
|--------|---------------------------------------|---------------|
| 1      | Digital English Language Laboratory   |               |
| 2      | Computers and Headphones              |               |
| 3      | Magazines, Articles, Journals in Lab. |               |

## **13. E-LEARNING RESOURCES**

(Please mention complete URL of the E- resourses CO wise)

| 1  | https://www.nptel.ac.in/courses |
|----|---------------------------------|
| 2  | https://www.k12reader.com       |
| 3. | https://www.eduaction.com       |
| 4. | https://www.k5learning.com      |
| 5. | https://www.english4u.com       |

| CO.<br>NO. | Course Outcome                                                                                            | P01 | PO2 | PO3 | P04 | PO5 | P06 | PO7 | PO8 | P09 | PO10 | PSO1 | PSO2 |
|------------|-----------------------------------------------------------------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|
| CO1        | Develop the habit to<br>express new ideas<br>properly.                                                    |     |     | 3   | -   | 1   | -   | -   | -   | 1   | 1    | -    | -    |
| CO2        | Select correct type of<br>communicationindifferent situations.                                            | -   | -   | 1   | -   | 1   | -   | 1   | 1   | 1   | 1    | -    | -    |
| CO3        | Avoid communication<br>barriers for effective<br>communication.                                           | -   | -   | 2   | -   | 2   | 2   | 2   | 2   | 2   | 2    | -    | -    |
| CO4        | Use appropriate body<br>language to<br>communicate effectively                                            | -   | -   | 1   | -   | 2   | 2   | 2   | 3   | 3   | 3    | -    | -    |
| CO5        | Formulate various ways<br>to face interview<br>effectively.                                               | -   | -   | 2   | -   | 3   | 2   | 2   | 3   | 3   | 3    | -    | -    |
| CO6        | Draft different types of<br>business letters, notices,<br>memoranda and E-mails<br>using correct formats. | -   | -   | 1   | -   | 1   | -   | -   | 1   | 1   | 1    | -    | -    |

## POs and PSOs assignment and its strength of assignment with each CO of the Course -

## **Course Curriculum Design Committee:**

| Sr. | Name of the        | Designation and Institute                               |
|-----|--------------------|---------------------------------------------------------|
| No  | faculty member     |                                                         |
| 1   | Mrs. P.Y. Kamble   | Lecturer in English, Government Polytechnic, Aurangabad |
| 2   | Mrs. M.S. Ban      | Lecturer in English, Government Polytechnic, Aurangabad |
| 3   | Mr. P.V. Deshmukh  | Lecturer in English, Government Polytechnic, Aurangabad |
| 4   | Mr. R.L. Korde     | Lecturer in English, Government Polytechnic, Aurangabad |
| 5   | Mr. D.D. Gangthade | Lecturer in English, Government Polytechnic, Aurangabad |
| 6   | Mr. A.P. Jagtap    | Lecturer in English, Government Polytechnic, Osmanabad  |

Member Secretary PBOSChairman PBOSCo-coordinator<br/>science and Humanities

# COURSE TITLEENGINEERING DRAWINGCOURSE CODE6R201

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical, Automobile                            | Second                    |

#### 1. RATIONALE

Engineering Drawing is the language of an engineers and technicians. Always the engineers come across different types of drawings. It is therefore very important to understand the concepts involved in drawing. The course aims at developing the ability to draw and read projections of lines/planes/solids and develops imagination and translating skills in drawing orthographic sectional and missing views of common engineering components.

It covers knowledge & application of drawing instruments & also familiarizes the learner about Bureau of Indian standards.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Prepare engineering drawings with given geometrical dimensions using prevailing drawing standards and drafting instruments."

| т  | eaching \$                        | Scheme | Total              | Examination Scheme (Marks) |     |               |            |       |  |
|----|-----------------------------------|--------|--------------------|----------------------------|-----|---------------|------------|-------|--|
|    | Hours/ C                          |        | Credits<br>(L+T+P) | Theo                       | ory | Pract         | ical       | Total |  |
| L  | Т                                 | Р      | С                  | ESE                        | РТ  | ESE @<br>(PR) | PA<br>(TW) | 100   |  |
| 2  | _                                 | 4      | 6                  |                            |     | 50#           | 50         | 100   |  |
| Du | Duration of the Examination (Hrs) |        |                    |                            |     | 2hrs.         |            |       |  |

#### 3. TEACHING AND EXAMNATION SCHEME

**Legends : L-**Lecture; **T-**Tutorial/Teacher Guided Theory Practice ; **P-** Practical; **C-** Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Draw orthographic views of objects.
- 2. Draw sectional views of objects.
- 3. Draw isometric views and missing view
- 4. Draw projections of 2D and 3D standard regular entities.
- 5. Draw sectional views of 3D standard solids.
- 6. Use various drawing codes, conventions and symbols as per IS SP-46.

### 5. DETAILED COURSE CONTENTS

| Unit             | Major Learning Outcomes           | Topics And Sub-Topics                           |  |  |
|------------------|-----------------------------------|-------------------------------------------------|--|--|
|                  | (Cognitive Domain Only)           |                                                 |  |  |
| Unit - I         | 1a.Draw the orthographic          | Using First Angle Projection Method             |  |  |
| Orthographic and | views of object.                  | only.                                           |  |  |
| sectional views  |                                   | 1.1 Review of orthographic projections          |  |  |
|                  | 1b.Draw sectional orthographic    | 1.2 Conversion of pictorial view into           |  |  |
|                  | views of object.                  | Orthographic views.                             |  |  |
|                  |                                   | 1.3 Sectional orthographic views.               |  |  |
| Unit - II        | 2a.Draw the isometric view        | 2.1 Introduction                                |  |  |
| Isometric        | from orthographic views.          | 2.2 Isometric scale and its use                 |  |  |
| projections      | 2b.Use isometric scale to draw    | 2.3 Conversion of orthographic views            |  |  |
|                  | isometric projections.            | into isometric view / projection                |  |  |
|                  |                                   | (Including rectangular, cylindrical             |  |  |
|                  |                                   | objects, representation of slots on             |  |  |
|                  |                                   | sloping as well as plane surfaces)              |  |  |
| Unit - III       | 3a.Draw the projection of         | Using First Angle Projection Method             |  |  |
| Projections of   | points, lines and planes with     | only.                                           |  |  |
| Lines and Planes |                                   | 3.1 Projection of points.                       |  |  |
|                  | different orientations.           | 3.2 Projection of Lines inclined to <b>one</b>  |  |  |
|                  | 3b. Find out true shape and       | reference plane only.                           |  |  |
|                  | size of a inclined line or plane. | 3.3 Projection of Planes inclined to <b>one</b> |  |  |
|                  |                                   | reference plane only.                           |  |  |

| 6R201             | GPA                               | Engineering Drawing                    |
|-------------------|-----------------------------------|----------------------------------------|
|                   |                                   |                                        |
| Unit - IV         | 4a.Identify center, apex,         | Projection of following solids with    |
| Projection of     | corners, lines, surfaces and      | their axes inclined to one reference   |
| solids            | slant edges of regular solids.    | plane only. (Use of first angle method |
|                   | 4b.Draw the projection of         | of projections).                       |
|                   | Solids with different             | 4.1 Prism and pyramids: Triangular,    |
|                   | orientations.                     | Square, Pentagonal and Hexagonal       |
|                   |                                   | types.                                 |
|                   |                                   | 4.2 Cylinder                           |
|                   |                                   | 4.3 Cones.                             |
| Unit - V          | 5a.Draw the projection of         | Use First angle projection method      |
| Section of solids | sections of solids with different | only.                                  |
|                   | conditions and positions.         | Axis of cutting plane inclined to one  |
|                   | 5b.Find out true shape and        | reference plane and parallel to other  |
|                   | size of an inclined solid.        | reference plane. Axis of solid         |
|                   |                                   | perpendicular to one reference plane   |
|                   |                                   | only.                                  |
|                   |                                   | 5.1 Sectional views of solids such as  |
|                   |                                   | Prism, pyramid, cone and cylinder      |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                          | Teaching<br>Hours | Distribution of practical exam.<br>Marks |       |       |       |  |  |
|------|-------------------------------------|-------------------|------------------------------------------|-------|-------|-------|--|--|
|      |                                     |                   | R                                        | U     | Α     | Total |  |  |
|      |                                     |                   | Level                                    | Level | Level | Marks |  |  |
| Ι    | Orthographic and sectional views    | 8                 | 2                                        | 4     | 6     | 12    |  |  |
| II   | Isometric projections               | 6                 | 2                                        | 4     | 4     | 10    |  |  |
| III  | Projections of Lines and<br>Planes. | 8                 | 2                                        | 4     | 6     | 12    |  |  |
| IV   | Projection of solids                | 6                 | -                                        | 4     | 4     | 8     |  |  |
| V    | Section of solids                   | 4                 | -                                        | 4     | 4     | 8     |  |  |
|      | Total                               | 32                | 6                                        | 20    | 24    | 50    |  |  |

Legends: R – Remember, U – Understand, A – Apply and above (Bloom's revised Taxonomy)

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (outcomes in psychomotor and affective domain) so that students are 6R201

able to acquire the competencies/ programme outcomes. A3 size sketch book should be used by the students. It is necessary to draw all the sheet problems in sketch book first and then redrawn on the sheets

| Sr. | Unit   | Practical Exercises                                      | Hrs.     |
|-----|--------|----------------------------------------------------------|----------|
| No. | Number |                                                          | required |
|     | -      |                                                          |          |
| 1   | Ι      | 1.1 One sheet on Orthographic projections of a given     | 8        |
|     |        | object                                                   |          |
|     |        | (2 problems)                                             |          |
|     |        | 1.2 One sheet on Sectional Orthographic projections of a | 8        |
|     |        | given object(2 problems)                                 |          |
|     |        | 1.3 practice problems in sketch book on above            |          |
| 2   | II     | 2.1 One sheet on Isometric projection (2 problems) and   | 10       |
|     |        | practice problems in sketch book                         |          |
| 3   | III    | 3.1 One sheet on projection of lines & planes.           | 8        |
|     |        | (2+2 problems) and practice problems in sketch book      |          |
| 4   | IV     | 4.1 One sheet on projection of solids (2 problems) and   | 10       |
|     |        | practice problems in sketch book                         |          |
| 5   | V      | 5.1 One sheet on projection of sections of solids.       | 10       |
|     |        | (2 problems) and practice problems in sketch book        |          |
| 6   | Ι      | Redraw orthographic projection sheet using AutoCAD.      | 10       |
|     |        | Total                                                    | 64       |

#### Notes:

- a. Use one sides of sheet.
- b: Theory & practice should be in first angle projections and IS codes should be followed wherever applicable.
- c: The dimensions of line, axes, distances, angle, side of polygon, diameter, etc. may be different for different batches.
- d: The sketchbook has to contain data of all problems, solutions of all problems and student activities performed. Students' activities are compulsory to be performed.
- e: A hand out containing applicable standards from IS codes including title block as per IS standard should be given to each student by concerned teacher.
- f: For 50 marks Practical Marks ESE, students are to be assessed for competencies achieved. Students are to be given data for practical ESE to prepare drawings.

AUTO-CAD Work: In a few practical hours students should be made conversant with auto

cad 2D and 3D regular solid drawings. Simple drawings should be demonstrated to the class with use of LCD projector

**One sheet** on orthographic projections should be redrawn by using AUTO-CAD and its Print out A4 size should be attached in sketch book by all students.

#### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided co-curricular students activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

| Sr.<br>No. | Activities                                                                                                                            |
|------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1          | Draw free hand isometric views of any components. Also draw orthographic projections of them (all views).                             |
| 2          | Prepare models of planes, solids of cardboard, sheets. Position it with reference to principle planes.                                |
| 3          | Draw simple 2D and 3D with AutoCAD.                                                                                                   |
| 4          | List points, apex, center line, slant edges of different standard solid models available in laboratory.                               |
| 5          | Students should collect Production drawings, Layouts from nearby<br>workshops/industries and visualize the part from the given views. |

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

| Sr. no. | Unit | Unit name                        | Strategy                         |
|---------|------|----------------------------------|----------------------------------|
|         | no   |                                  |                                  |
| 1       | Ι    | Orthographic and sectional views | Conventional black board method, |
|         |      |                                  | Use of models.                   |
|         |      |                                  | Use of software.                 |
| 2       | II   | Isometric projections            | Conventional black board method, |
|         |      |                                  | Use of models.                   |
| 3       | III  | Projections of Lines and         | Planes made of sheet, cardboard. |

|   |    | Planes               |                    |
|---|----|----------------------|--------------------|
| 4 | IV | Projection of solids | models             |
| 5 | V  | Section of solids    | Models cut section |

#### **10 .SUGGESTED LEARNING RESOURCE**

| Sr | Title of Book           | Author and Publication                |
|----|-------------------------|---------------------------------------|
| No |                         |                                       |
| 1  | Elementary Engineering  | N.D.Bhatt, Charotar Publishing House  |
|    | Drawing                 |                                       |
| 2  | Engineering Drawing     | Mali, Chaudhari, Vrinda Publication   |
| 3  | Engineering Drawing     | Sidheswar Shastri , Tata Mc Graw Hill |
| 4  | Engineering Drawing     | Arunoday kumar, Techmax               |
|    |                         | publications, Pune.                   |
| 5  | Engineering Drawing for | IS CODE SP- 46                        |
|    | schools and colleges    |                                       |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.No. | Major equipment/ Instrument with Broad Specification             | Quantity |
|--------|------------------------------------------------------------------|----------|
| 1      | Models- full and cut. (wooden and acrylic)                       | 12       |
| 2      | Drawing equipments and instruments for class room teaching-large | 1        |
|        | size.                                                            |          |
| 3      | Drawing board-half imperial size.                                | 100      |
| 4      | T-square or drafter (Drafting Machine).                          | 1        |
| 5      | Auto-Cad software                                                | 1        |

#### **12. LEARNING WEBSITE & SOFTWARE**

- a) http://www.slideshare.net/sahilsahil992/conic-section-1819818
- b) http://www.technologystudent.com/designpro/drawdex.htm
- c) http://www.engineeringdrawing.org/engg\_curves/problem-3-8-engineering-curves/490/
- d) http://web.iitd.ac.in/~hirani/mel110-part3.pdf
- e) http://www.studyvilla.com/ed.aspx
- f) <u>http://www.youtube.com/watch?v=a703\_xNeDao</u>
- g) E-learning package from KOROS.
- h) E-learning package from Cognifront

| 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME |
|-------------------------------------------------------|
| SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)   |

| CO. | Course Outcome                   | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | PS | PS |
|-----|----------------------------------|---|---|---|---|---|---|---|---|---|---|----|----|
| NO. |                                  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 01 | O2 |
|     |                                  | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 |    |    |
|     |                                  |   |   |   |   |   |   |   |   |   | 0 |    |    |
| CO1 | Draw orthographic views of       | 1 | 3 | 3 | 1 | - | - | - | 3 | 1 | - | 2  | 2  |
|     | objects.                         |   |   |   |   |   |   |   |   |   |   |    |    |
| CO2 | Draw sectional views of objects. | 1 | 3 | 3 | 1 | - | - | - | 3 | 1 | - | 1  | 2  |
| CO3 | Draw isometric views and         | 1 | 3 | 3 | 1 | - | - | - | 3 | 1 | - | 1  | 2  |
|     | missing view                     |   |   |   |   |   |   |   |   |   |   |    |    |
| CO4 | Draw projections of 2D and 3D    | 1 | 3 | 3 | - | - | - | - | 3 | 1 | - | -  | 1  |
|     | standard regular entities.       |   |   |   |   |   |   |   |   |   |   |    |    |
| CO5 | Draw sectional views of 3D       | 1 | 3 | 3 | 1 | - | - | - | 3 | 1 | - | -  | 1  |
|     | standard solids.                 |   |   |   |   |   |   |   |   |   |   |    |    |
| CO6 | Use various drawing codes,       | 1 | 2 | 2 | - | - | - | - | 2 | 1 | - | -  | 2  |
|     | conventions and symbols as per   |   |   |   |   |   |   |   |   |   |   |    |    |
|     | IS SP-46.                        |   |   |   |   |   |   |   |   |   |   |    |    |

Course Curriculum Design Committee

- Sr Name of the Designation and Institute
- No faculty members
- 1 Aher S. M. Lecturer in Mechanical Engineering, Govt.Polytechnic,Aurangabad
- 2 Dhirbassi G. D Lecturer in Mechanical Engineering, Govt.Polytechnic,Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

### NON EXAM: 6G311 TO 6G328

#### **Course Structure:**

| <b>Teaching Scheme</b> |    | Evaluation Scheme |    |     |    |    |    |       |
|------------------------|----|-------------------|----|-----|----|----|----|-------|
| TH                     | 0  |                   | PT | TEE | TW | PR | OR | Total |
| PR                     | 02 | Max.Marks         |    |     |    |    |    |       |
| TOTAL                  | 02 | Duration          |    |     |    |    |    |       |

## (LIST OF NON EXAM COURSES)

| 6G311 | Personality Development          |
|-------|----------------------------------|
| 6G312 | Entrepreneurship Development(CE) |
| 6G313 | Hobby Electronics                |
| 6G314 | Spoken English                   |
| 6G315 | German                           |
| 6G316 | French                           |
| 6G317 | Yoga                             |
| 6G318 | Music instrumental               |
| 6G319 | Two wheeler maintenance          |
| 6G320 | Entrepreneurship Development(EE) |
| 6G321 | Electrical maintenance           |
| 6G322 | Electronic maintenance           |
| 6G323 | Computer Hardware Maintenance    |
| 6G324 | Japanese                         |
| 6G325 | Music vocal                      |
| 6G326 | aerobics                         |
| 6G327 | Indian classical Dance           |
| 6G328 | Sewing machine maintenance       |

# COURSE TITLEMECHANICAL TECHNOLOGYCOURSE CODE6M204

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is<br>offered | Semester in which offered |
|------------------------------------------------------|---------------------------|
| Mechanical                                           | Second                    |

#### 1. RATIONALE

Diploma engineers are always involved in the application of engineering processes in the manufacturing areas. In view of this, it is essential that the diploma engineers should be well exposed to the fundamental processes called non chip forming processes like welding, cold working, hot working, press work, pattern making and foundry processes. Mechanical engineer should be able to visualize these processes in the field of engineering.

#### 2. COMPETENCY

At the end of studying this course students will be able to

#### "Produce different components using non chip forming process."

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme                   |                 | Total |                    | Examin | nation Scheme (Marks) |           |      |       |
|-----------------------------------|-----------------|-------|--------------------|--------|-----------------------|-----------|------|-------|
|                                   | (Hours/Credits) |       | Credits<br>(L+T+P) | Theory |                       | Practical |      | Total |
| L                                 | Т               | Р     | С                  | ESE    | РТ                    | ESE @     | PA   |       |
| Ľ                                 | 1               | 1     | C                  | LOL    |                       | (PR/OR)   | (TW) | 150   |
| 3                                 | -               | 3     | 6                  | 80     | 20                    |           | 50   | 130   |
| Duration of the Examination (Hrs) |                 |       | 03                 | 01     |                       |           |      |       |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

#### 4. COURSE OUTCOMES

At the end of studing this course students will be able to: -

- 1) Prepare pattern considering different allowances
- 2) Produce simple castings by using sand moulds.
- 3) Prepare simple components by press operations
- 4) Perform welding operation by using relevant parameters.
- 5) Follow safety precautions.

#### 5. DETAILED COURSE CONTENT

| Unit                | Major Learning Outcomes | Topics and Sub-Topics                                                      |  |  |  |
|---------------------|-------------------------|----------------------------------------------------------------------------|--|--|--|
|                     | (Cognitive Domain Only) |                                                                            |  |  |  |
| Unit - I            | 1a. Describe the        | 1.1 Definition, Design consideration in                                    |  |  |  |
| Pattern Making      | constructions of        | pattern, pattern layout, pattern                                           |  |  |  |
|                     | pattern                 | construction,                                                              |  |  |  |
|                     | 1b. Prepare pattern     | 1.2 Pattern materials, selection of                                        |  |  |  |
|                     | layouts                 | materials; Allowances, master pattern,<br>function, types, core prints     |  |  |  |
|                     |                         | unserviceable parts as pattern; core                                       |  |  |  |
|                     | 1c. Use of different    | boxes                                                                      |  |  |  |
|                     | allowances.             | 1.3 Color code and preservation of                                         |  |  |  |
|                     | 1d. Apply colour codes. | pattern. Shrinkage / contraction Rule.                                     |  |  |  |
|                     |                         |                                                                            |  |  |  |
| Unit - II           | 2a. Describe different  | 2.1 Hand tools, and their uses,                                            |  |  |  |
| Moulding            | moulding machine        | 2.2 Moulding machines and their types,                                     |  |  |  |
|                     | 2b. Identify the        | 2.3 Moulding sand, characteristics,<br>constituents of moulding sand, sand |  |  |  |
|                     | Characteristics of      | preparation & conditioning, sand                                           |  |  |  |
|                     | moulding sand           | testing equipments, core moulding, and                                     |  |  |  |
|                     | 2c. Describe testing of | solidification of metals.<br>2.4 CO <sub>2</sub> moulding.                 |  |  |  |
|                     | moulding sand           | 2.5 Moulding procedure, gating, rising, use                                |  |  |  |
|                     | 2d. Write functions of  | of pads, exothermic material, use of                                       |  |  |  |
|                     | gating system           | chills, chaplets.                                                          |  |  |  |
| Unit - III          | 3a. Describe different  | 3.1 Introduction, furnaces used in                                         |  |  |  |
| Foundry Engineering | types of furnaces.      | foundry like coke fired, gas fired,                                        |  |  |  |
|                     | 3b. Explain cupola      | cupola,<br>3.2 Preparation of cupola, charging of                          |  |  |  |
|                     | operation.              | cupola, jamming of cupola,                                                 |  |  |  |
|                     |                         | 3.3 Defects in casting, causes &                                           |  |  |  |

GPA

Mechanical Technology

|                                                | <ul> <li>3c. Identify defects in casting</li> <li>3d. Describe different casting processes.</li> </ul>                                                                            | remedies, inspection of casting,<br>3.4 Gravity die casting, slush casting,<br>3.5 Special casting methods, permanent<br>mould, hot chamber die casting m/c,<br>cold chamber<br>3.6 Die casting m/c, centrifugal<br>casting, true centrifugal, semi<br>centrifugal, and centrifuging,<br>investment casting, continuous<br>casting                                                                                      |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit - IV<br>Hot and Cold<br>working processes | <ul><li>4a. Describe different hot<br/>working processes.</li><li>4b. Describe different cold<br/>working processes.</li></ul>                                                    | <ul> <li>4.1 Processes of Hot working: Pipe &amp; tube production, forging, extrusion, piercing, hot spinning.</li> <li>4.2 Process of cold working: cold rolling, shearing &amp; blanking, wire drawing, spinning, embossing, stretch forging, squeezing, high pressure sheet metal forming.</li> </ul>                                                                                                                |
| Unit - V<br>Press and Press work               | <ul> <li>5a. Describe different types<br/>of presses</li> <li>5b. Identify different parts of<br/>power press.</li> <li>5c. Describe power press<br/>driving mechanism</li> </ul> | <ul> <li>5.1 Introduction, types of presses,</li> <li>5.2 Power press parts, power press driving mechanism, press size, press tools,</li> <li>5.3 Methods of punch support, methods of die support, die accessories, types of dies and operations, press guard, Types of press tools, press brake, press operations.</li> </ul>                                                                                         |
| Unit – VI<br>Welding                           | <ul> <li>6a. Classify welding.</li> <li>6b. Describe welding methods</li> <li>6c. Select proper welding method for different materials</li> </ul>                                 | <ul> <li>6.1 Classification of welding,</li> <li>6.2 Study of welding methods – Arc welding, Gas welding, Resistance welding, Spot welding, butt welding, flash welding, seam welding, projection welding, thermit welding, inert gas arc welding, TIG welding, MIG welding,</li> <li>6.3 Selection of welding methods for different materials such as cast steel, cast iron, carbon steel, stainless steel.</li> </ul> |

## 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

GPA

|            |                                |                   | Distribution Of Theory Marks |            |            |       |  |  |
|------------|--------------------------------|-------------------|------------------------------|------------|------------|-------|--|--|
| Unit<br>No | Title Of Unit                  | Teaching<br>Hours | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |  |
| 1          | Pattern Making                 | 6                 | 02                           | 04         | 08         | 14    |  |  |
| 2          | Moulding                       | 8                 | 02                           | 04         | 08         | 14    |  |  |
| 3          | Foundry Engineering            | 10                | 02                           | 06         | 06         | 14    |  |  |
| 4          | Hot and Cold working processes | 8                 | 02                           | 06         | 04         | 12    |  |  |
| 5          | Press and Press work           | 8                 | 02                           | 04         | 06         | 12    |  |  |
| 6          | Welding                        | 8                 | 04                           | 04         | 06         | 14    |  |  |
|            |                                | 48                | 14                           | 28         | 38         | 80    |  |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

## 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                                                                                                                                                                | Hours                |
|------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 1          | 1    | <ul> <li>Prepare a Pattern by using various allowances.</li> <li>Selection of material.</li> <li>Reading of drawing.</li> <li>Selection of materials/tools.</li> <li>Procedure for pattern making.</li> <li>Prepare a sand mould for simple component.</li> </ul> | 03<br>03<br>03<br>03 |
| 2          | 2    | <ul> <li>Selection of material.</li> <li>Reading of drawing.</li> <li>Procedure for sand mould.</li> </ul>                                                                                                                                                        | 02<br>03<br>03       |
| 3          | 3    | Produce sand casting.                                                                                                                                                                                                                                             | 08                   |
| 4          | 5    | <ul><li>Prepare a simple component on press machine.</li><li>Selection of material.</li><li>Reading of drawing.</li></ul>                                                                                                                                         | 02<br>03<br>03       |

|   |   | Manufacturing of the component.                                                                                                                                                                                                                 |                            |
|---|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|
|   |   | Produce a component by using arc welding process.                                                                                                                                                                                               |                            |
| 5 | 6 | <ul> <li>Reading of drawing.</li> <li>Cut the raw material as per drawing.</li> <li>Selection of hand tools/ machines.</li> <li>Observe the welding defects &amp; interpretation.</li> <li>Application of proper safety precautions.</li> </ul> | 03<br>03<br>03<br>02<br>01 |
|   |   | TOTAL                                                                                                                                                                                                                                           | 48                         |

**GPA** 

#### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- a. Visit to the Foundry shop and observe the Centrifugal/Investment/Die Casting process and identify the different defects on the surface of component.
- b. Visit to Industry where the operation like drop forging, rolling & extrusion are carried out. Collect information on types these machines, their specification and observe various activities performed in a these processes and characteristics of output product.
- c. Visit to Industry/workshop to observe the process like seam, spot, TIG & MIG welding. Collect information on these machines, their specification and observe these processes critically and get the information regarding various accessories (electrodes, current rating etc.) used in these processes.
- d. Collect information of recent advancement in manufacturing processes, machines/tools/equipments and its specifications/manufacturer and application in the industry.
- e. Collect information of various forming processes used in industry. Observe shape of input and output product and suggest suitable operation for various jobs.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

#### **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                  | Author                     | Publication             |
|-------|-------------------------------|----------------------------|-------------------------|
| 1     | Workshop Technology<br>Vol. 1 | Hajra, Choudhary           | Asia Publications Delhi |
| 2     | Workshop Technology Vol.1     | Raghuwanshi,               | Dhanpat rai and sons    |
| 3     | Production Technology         | R.K. Jain,                 | Khanna Publications     |
| 4     | Workshop Technology           | Chapman (Vol. 1 & Vol. 2), | Arnold Publications     |

GPA

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S. No. | Name of equipment                | Brief specification           |
|--------|----------------------------------|-------------------------------|
| 1.     | Wood turning lathe ,hand tools   | As per Workshop specification |
| 2.     | Pit furnace and foundry tools    | As per Workshop specification |
| 3      | Fly press                        | As per Workshop specification |
| 4      | Arc welding / Gas welding set up | As per Workshop specification |

#### 12. LEARNING WEBSITE & SOFTWARE

- i. <u>www.nptel.ac.in</u>
- ii. http://nptel.iitm.ac.in/video.php?subjectId=112105126
- iii. http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Manuf%20P roc%20II/pdf/LM-01.pdf
- iv. http://www.savetubevideo.com/?v=H0AyVUfl8-k&list=PLEFE7D1579523C45D
- v. http://www.savetubevideo.com/?v=FFzRIop5bpg&list=PL843C2A830C65E2EE
- vi. <u>http://www.savetubevideo.com/?v=81Fdif5e85c</u>
- vii. http://www.savetubevideo.com/?v=A0dTvf\_Q8BA&list=PL2C105C94D2955C8B
- viii. http://www.savetubevideo.com/?v=tDc0l9Gm8D4&list=PL3AFB507B668AF162 http://www.savetubevideo.com/?v=THVgkBnjLq0
  - ix. http://www.savetubevideo.com/?v=6VpCBk7FahI
  - x. <u>http://www.savetubevideo.com/?v=7wC1u4WOV1o</u>
  - xi. <u>http://www.savetubevideo.com/?v=VDIoUZuTunI</u>
- xii. <u>http://www.savetubevideo.com/?v=fGqc9mZS0YI</u>
- xiii. <u>http://www.savetubevideo.com/?v=Mn9jpqI8rao</u>

- xiv. <u>http://www.savetubevideo.com/?v=8SuoH5aL1SY</u>
- xv. <u>http://www.savetubevideo.com/?v=xxNZSQML\_ZA</u>
- xvi. http://www.savetubevideo.com/?v=XXUHZxweBcw&list=PLD07DE61CB871A0CB

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| Sr<br>No | Course Outcome                                                |   | POs                  |   |   |   |   |    | PSOs |   |    |    |    |
|----------|---------------------------------------------------------------|---|----------------------|---|---|---|---|----|------|---|----|----|----|
| 110      |                                                               | 1 | 1 2 3 4 5 6 7 8 9 10 |   |   |   |   | 01 | 02   |   |    |    |    |
|          |                                                               | 1 | 2                    | 5 | 4 | 5 | 6 | /  | 0    | 9 | 10 | 01 | 02 |
| 1        | Prepare pattern<br>considering different<br>allowances.       | 3 | 3                    | 3 | 3 | - | - | -  | 2    | - | -  | -  | 3  |
| 2        | Produce simple<br>castings by using<br>sand moulds.           | 3 | 3                    | 3 | 3 | - | - | -  | 2    | - | -  | -  | 3  |
| 3        | Prepare simple<br>component by press<br>operations            | 3 | 3                    | 3 | 3 | - | - | -  | 2    | - | -  | -  | 3  |
| 4        | Perform welding<br>operation by using<br>relevant parameters. | 3 | 3                    | 3 | 3 | - | - | -  | 2    | - | -  | -  | 3  |
| 5        | Follow safety precautions.                                    | 3 | 3                    | 3 | 3 | - | - | -  | 2    | - | -  | -  | 3  |

#### **Course Curriculum Design Committee**

Sr Name of the

```
Designation and Institute
```

- No faculty members
- 1 D.V. Tammewar Workshop Superintendent, Govt. Polytechnic, Aurangabad
- 2 S.V Borde Lecturer in Mechanical Engg. Govt. Polytechnic, Aurangabad.

(Member Secretary PBOS)

(Chairman PBOS)

## COURSE TITLETHEORY OF MACHINESCOURSE CODE6M206

#### **PROGRAMME & SEMESTER**

| Diploma programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Third                     |

#### 1. RATIONALE:-

This is a basic technology course which primarily focuses on the basic principles of various mechanisms, analysis of motions of the different parts of the machines. The principles of theory of machines are useful in designing the machines. The course also encompasses design of cams, power transmission drives, flywheels and governors.

#### 2. COMPETENCY

"To analyze the motions in different parts of the machines."

#### 3. TEACHING AND EXAMINATION SCHEME

| Teaching Scheme Tota              |   | Total              | Examination Scheme (Marks) |     |           |                  | )          |     |
|-----------------------------------|---|--------------------|----------------------------|-----|-----------|------------------|------------|-----|
| (Hours/ Credits)                  |   | Credits<br>(L+T+P) | Theory                     |     | Practical |                  | Total      |     |
| L                                 | Т | Р                  | С                          | ESE | PT        | ESE @<br>(PR/OR) | PA<br>(TW) | 150 |
| 3                                 | - | 2                  | 5                          | 80  | 20        |                  | 50         | 150 |
| Duration of the Examination (Hrs) |   | 03                 | 01                         |     |           |                  |            |     |

**Legends:** L-Lecture; T – Tutorial/Teacher Guided Theory Practice; P -Practical; C – Credit, ESE-End Semester Examination; PT - Progressive Test; OR-Oral examination,  $\sim$  Online Examination.

#### 4. COURSE OUTCOMES:

At the end of studying this course students will be able to: -

- 1. Analyze different mechanisms and their inversions.
- 2. Determine velocity and acceleration quantities for different mechanisms.
- 3. Draw Cam profiles for given applications
- 4. Calculate power transmitted by the different drives.

5. Determine the forces required to overcome the friction in bearings.

6. Demonstrate use of flywheel & governor in machineries.

## 5. DETAILED COURSE CONTENTS

| Unit                                               | Major Learning Outcomes                                                                                                                                                                                                                                                                                                                  | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|----------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                    | (Cognitive Domain Only)                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unit –I<br>Simple Mechanisms                       | <ul> <li>mechanism</li> <li>1b. Compare machine with structure.</li> <li>1c. Identify constrained motions in given kinematic pairs</li> <li>1d. Explain kinematic chain, mechanism and inversions of different mechanisms.</li> </ul>                                                                                                    | <ul> <li>1.1 Introduction, Kinematic link, Types of links, Concept of Machine and Structure, Difference between machine and structure. Kinematic pairs and types. Types of constrained motions.</li> <li>1.2 Concept of Kinematic chain, mechanism and Inversion. Inversions of Four bar chain: Beam engine, coupling rod, Watt's indicator mechanism.</li> <li>1.3 Inversions of Single Slider crank chain: Pendulum pump, oscillating cylinder, Rotary internal combustion engine, Quick return mechanism.</li> <li>1.4 Inversions of Double slider crank chain: Elliptical trammel, Oldham's coupling.</li> </ul>                                                                                                                                                         |
| Unit– II<br>Velocity &<br>Acceleration<br>Diagrams | <ul> <li>2a. Apply relative velocity method (Graphical method) for a given mechanism to determine velocity and acceleration</li> <li>2b. Draw velocity and acceleration diagrams by using instantaneous centre of rotation method.</li> <li>2c. Draw velocity and acceleration diagrams by using Klein's construction method.</li> </ul> | <ul> <li>2.1 Relative Velocity method<br/>Velocity and acceleration of a point on<br/>a link, concept of linear and angular<br/>velocity, centripetal and tangential<br/>acceleration, angular acceleration.</li> <li>2.2 Drawing of velocity and acceleration<br/>diagrams for simple mechanisms by<br/>relative velocity method.</li> <li>2.3 Instantaneous centre of Rotation (ICR)<br/>method: Concept of ICR, Types of<br/>Instantaneous centers, Kennedy's<br/>theorem, circle diagram to locate<br/>Instantaneous centers, finding of<br/>velocity of various points by ICR<br/>method for Slider crank mechanism<br/>and four bar mechanism.</li> <li>2.4 Klein's construction for velocity and<br/>acceleration of piston in slider crank<br/>mechanism.</li> </ul> |

| Unit– III                        | 20 Differentiate various types 2.1 Definition of some and full                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cams & Followers                 | <ul> <li>3a. Differentiate various types of cams &amp; followers</li> <li>3b. Draw different types of follower motions</li> <li>3c. Draw cam profiles with respect to different follower motions.</li> <li>3.1 Definition of cam and follower, types of cams and follower, cam terminology.</li> <li>3.2 Motions of follower, simple harmonic, uniform velocity, uniform acceleration &amp; retardation, their displacement, velocity &amp; acceleration diagrams.</li> <li>3.3 Drawing the profiles of cam for given follower and type of motion with offset and without offset.</li> </ul>                                                                                                                                                                                                                                                                       |
| Unit– IV<br>Power Transmission   | <ul> <li>4a. Select a drive for a given application</li> <li>4b. Calculate belt tensions and length of belt for the given set of conditions</li> <li>4c. Calculate power transmitted by the belt for the given set of conditions.</li> <li>4d. Select gears for different arrangement of shafts</li> <li>4e. Determine velocity ratios for simple, compound &amp; epicyclic gear trains.</li> <li>4.2 Belt drives, types of belts, concept of velocity ratio, length of belt, concept of timing belt.</li> <li>4.3 Power transmitted by belt drive, condition for maximum power transmission.</li> <li>4.4 Gears: Gear terminology, types of gears, Gear ratio, spur, helical, bevel, spiral, herringbone, rack and pinion types, and law of gearing.</li> <li>4.5 Gear trains: Simple, compound and epicyclic gear trains &amp; their velocity ratios.</li> </ul> |
| Unit - V<br>Friction In Bearings | <ul> <li>5a. Calculate friction power for the given bearing according to uniform pressure &amp; uniform wear condition.</li> <li>5b. Select a type of bearing for a given situation</li> <li>5c. Calculate friction power for the given bearing to uniform pressure and uniform wear condition.</li> <li>5.1 Types of friction, coefficient of friction.</li> <li>5.2 frictions of pivot and collar bearing, conical bearing with their theories of uniform pressure and uniform wear condition, derivations. Simple numerical on uniform pressure and uniform wear condition.</li> </ul>                                                                                                                                                                                                                                                                          |

| Unit – VI   | 6a. Identify flywheel and 6.1 Flywheels: Functions of                        |
|-------------|------------------------------------------------------------------------------|
| Flywheel    | governor in various Flywheel, concept of turning                             |
| & Governor  | machines. moment $(T - \theta)$ diagram for four                             |
|             | 6b. Compare governor with stroke internal combustion                         |
|             | flywheel. engine, multi cylinder engine.                                     |
|             | 6c. Construct T- $\theta$ diagram for 6.2 Fluctuation of energy, coefficient |
|             | single and multi cylinder of fluctuation of energy,                          |
|             | engines to select size of fluctuation of speed and                           |
|             | flywheel importance of flywheel in engine                                    |
|             | and machines.                                                                |
|             | 6.3 Governors: Function of governor,                                         |
|             | types of governors as centripetal                                            |
|             | and inertia.                                                                 |
|             | 6.4 Governor terminology,                                                    |
|             | comparison with flywheel.                                                    |
| Unit – VII  | 7a. Calculate the balancing 7.1 Concept of balancing, balancing              |
| Balancing & | mass for a given of single rotating mass.                                    |
| Vibrations  | application in a single 7.2 Graphical and analytical method                  |
|             | plane for balancing of several masses                                        |
|             | 7b. Identify causes of revolving in same plane.                              |
|             | vibrations in a given 7.3 Concept and terminology used in                    |
|             | machine. vibration, causes of vibrations in                                  |
|             | 7c. Suggest suitable remedial machines, their harmful effects                |
|             | measures to minimize and remedies, Simple numerical                          |
|             | vibrations. on balancing of several masses                                   |
|             | revolving in same plane.                                                     |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                       |                   | Distribution Of Theory Marks |            |            |       |  |  |
|------------|---------------------------------------|-------------------|------------------------------|------------|------------|-------|--|--|
| Unit<br>No | Title Of Unit                         | Teaching<br>Hours | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |  |
| Ι          | Simple mechanisms                     | 08                | 04                           | 04         | 04         | 12    |  |  |
| II         | Velocity and Acceleration<br>Diagrams | 10                | 02                           | 08         | 06         | 16    |  |  |
| III        | Cams and Followers                    | 08                | 02                           | 06         | 04         | 12    |  |  |
| IV         | Power Transmission                    | 10                | 02                           | 08         | 04         | 14    |  |  |
| V          | Friction in Bearings                  | 04                | 02                           | 04         | 04         | 10    |  |  |
| VI         | Flywheel and Governor                 | 04                | 00                           | 06         | 04         | 10    |  |  |
| VII        | Balancing and Vibrations              | 04                | 00                           | 04         | 02         | 06    |  |  |
|            | Total                                 | 48                | 12                           | 40         | 28         | 80    |  |  |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

## 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                                           | Hours |
|------------|------|----------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Ι    | Dismantling & assembly of one each inversion of four bar and single slider crank and double slider crank mechanism.                          | 04    |
| 2          | Ι    | Determine quick return ratio for quick return mechanism for a given model.                                                                   | 02    |
| 3          | II   | Drawing the Velocity and acceleration diagrams by relative velocity method for simple mechanisms (Two problems)                              | 04    |
| 4          | II   | Drawing the velocity diagram by Instantaneous center method of four bar mechanism.                                                           | 02    |
| 5          | II   | Draw Klein's constructions to determine velocity and acceleration for a given slider crank mechanism.                                        | 02    |
| 6          | III  | Draw cam profile for a knife edge follower and with different<br>type of motions. (01 problem without offset and 01 problem with<br>offset)  | 04    |
| 7          | III  | Draw cam profile for a roller follower and with different type of motions. (01 problem without offset and 01 problem with offset)            | 04    |
| 8          | VI   | Determine the radius of rotation of fly-ball for different speed of<br>governor and draw a graph between radius of rotation versus<br>speed. | 02    |
| 9          | VII  | Dismantle and assemble a bicycle free wheel sprocket mechanism.                                                                              | 04    |
| 10         | IV   | Determination of Gear ratio for a given gear box and velocity<br>ratio for a given belt drive in the laboratory.                             | 04    |
|            |      | Total                                                                                                                                        | 32    |

# 8. SUGGESTED STUDENT ACTIVITIES

Other than class room and laboratory activities, following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain a report of their experiences which he/ she will submit at the end of the term.

Following is the list of proposed student activities like:

- 1. Prepare models of different mechanisms to understand motions.
- 2. Arrange an exhibition of different prototype models of mechanisms.
- 3. Search for applications of various mechanisms on internet in the machines used in day to day life.
- 4. Survey of various mechanisms used in material handling devices used in automotive and construction industries.

## 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATEGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning
- f. Industrial visits

## **10. SUGGESTED LEARNING RESOURCES**

| S.No. | Name of Book       | Author              | Publication         |
|-------|--------------------|---------------------|---------------------|
| 1     | Theory of machines | R. S. Khurmi        | S Chand and company |
| 2     | Theory of machines | P. L. Ballani       | Khanna Publishers   |
| 3     | Theory of machines | Jagdishlal and Shah |                     |
| 4     | Theory of machines | S. S. Ratan         | Tata McGraw Hill    |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr. No. | Name of equipment              | Brief specification  |
|---------|--------------------------------|----------------------|
| 1.      | Quick return mechanism         | As per specification |
| 2.      | Bicycle free wheel mechanism   | As per specification |
| 3.      | Centrifugal governor           | As per specification |
| 4.      | Different types of gear drives | As per specification |

#### **12. LEARNING WEBSITE & SOFTWARE**

- a dme-awh.blogspot.com/2012/07/kinematics-with-microstation.html
- b www.sciencedirect.com/science/journal/0094114X
- c http://nptel.ac.in/courses/112104121/1
- d https://www.journals.elsevier.com/mechanism-and-machine-theory
- e https://en.wikipedia.org/wiki/Mechanism\_(engineering)
- f www.erode-sengunthar.ac.in
- g https://www.youtube.com/watch?v=fbLl9xMLvl0
- h http://www.animatedengines.com/jets.html

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO.N | Course Outcome                                                                    | POs |    |    |   |    |   |    | PSO | S |    |    |    |
|------|-----------------------------------------------------------------------------------|-----|----|----|---|----|---|----|-----|---|----|----|----|
| 0.   |                                                                                   | 1   | 2  | 3  | 4 | 5  | 6 | 7  | 8   | 9 | 10 | 01 | 02 |
| CO 1 | Analyze different<br>mechanisms and their<br>inversions                           | 03  | 03 | -  | - | 01 | - | -  | -   | - | -  | 03 | -  |
| CO 2 | Determine velocity<br>and acceleration<br>quantities for different<br>mechanisms. | 02  | 03 | 02 | - | -  | - | 02 | -   | - | -  | -  | 01 |
| CO 3 | Draw Cam profiles for given applications                                          | -   | 03 | 02 | - | -  | - | 02 | -   | - | -  | -  | 01 |
| CO 4 | Calculate power<br>transmitted by the<br>different drives                         | -   | 03 | -  | - | -  | - | -  | -   | - | -  | 02 | -  |
| CO 5 | Determine the forces<br>required to overcome<br>the friction in bearings.         | 02  | 03 | -  | - | -  | - | -  | -   | - | -  | -  | -  |
| CO 6 | Demonstrate use of<br>flywheel & governor in<br>machineries                       | -   | 03 | -  | - | -  | - | -  | -   | - | -  | -  | -  |

# **Course Curriculum Design Committee**

| Sr<br>No | Name of the     | Designation and Institute                                         |
|----------|-----------------|-------------------------------------------------------------------|
| INU      | faculty members |                                                                   |
| 1        | V. M. Bukka     | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 2        | M. B. Sanap     | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 3        | V. B. Kumawat   | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

#### COURSE TITLE FLUID MECHANICS AND MACHINERY

#### COURSE CODE 6M401

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Third                     |

#### 1. RATIONALE:-

Knowledge of fluid flow & related machinery is essential in all fields of engineering. Hydraulic machines have important role in power generation, water supply and irrigation and also in most of engineering segments. This course requires knowledge of basic engineering sciences, applied mechanics, mathematics etc. The fundamentals of this course are essential for the course "Industrial Fluid Power".

#### 2. COMPETENCY:-

At the end of studying this course students will be able to

"Understand basic fluid mechanics principles, construction and working principles of hydraulic machines."

#### **3. TEACHING AND EXAMINATION SCHEME**

| Teaching Scheme                   |          | Total |                    | Examination Scheme (Marks) |    |                  |            |       |
|-----------------------------------|----------|-------|--------------------|----------------------------|----|------------------|------------|-------|
|                                   | Hours/ C |       | Credits<br>(L+T+P) | Theory                     |    | Theory Practical |            | Total |
| L                                 | Т        | Р     | С                  | ESE                        | РТ | ESE @<br>(OR)    | PA<br>(TW) | 150   |
| 3                                 | -        | 2     | 5                  | 80                         | 20 | 25#              | 25         | 150   |
| Duration of the Examination (Hrs) |          | 03    | 01                 |                            |    |                  |            |       |

**Legends : L-**Lecture; **T-**Tutorial/Teacher Guided Theory Practice ; **P-** Practical; **C-** Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal

#### 4. COURSE OUTCOMES:-

At the end of studing this course students will be able to: -

1. List basic properties of the fluid.

- 2. Measure the parameters such as pressure, velocity and flow rate by means of various devices.
- 3. Calculate major and minor losses in a piping system.
- 4. Conduct trial on hydraulic machines and draw operating performance curves.
- 5. Select pumps and turbines for a particular application.
- 6. Locate faults in pumps and turbines and suggest remedies.

# **5. DETAILED COURSE CONTENTS:**

| Unit                                      | Major Learning Outcomes<br>(in cognitive domain)                                                                                                                                                                                                                                                  | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit –I<br>Basics concepts                | <ul> <li>1a. Correlate physical properties of fluids for specific conditions.</li> <li>1b. Explain the procedure to measure the pressure of fluid by using manometers and bourdon's gauge for a given situation.</li> <li>1c. Calculate the pressure head for a given condition</li> </ul>        | <ul> <li>1.1 Mass density, weight density, specific volume, specific gravity, surface tension, capillarity, vapour pressure</li> <li>1.2 Viscosity - dynamic and kinematics, Newton's law of viscosity.</li> <li>1.3 Pressure, units, pressure head, Pascal's law, positive and negative pressure. Bourdon's tube, Manometers- piezometer, U-tube, simple differential (Simple Numericals)</li> </ul>  |
| Unit– II<br>Fundamentals<br>Of Fluid Flow | <ul> <li>2a. Use continuity equation for<br/>a given situtaion.</li> <li>2b. Apply Bernoulli's equation<br/>to venturimeter and pitot<br/>tube.</li> <li>2c. Calculate discharge and<br/>hydraulic coefficients for a<br/>given application.</li> </ul>                                           | <ul> <li>2.1 Types of flows, concept of discharge, continuity equation</li> <li>2.2 Energy possessed by the fluid -pressure, kinetic and potential energy</li> <li>2.3 Bernoulli's equation, assumptions, application of equation in pipes, venturimeter, pitot tube.</li> <li>2.4 Derivation for discharge through venturimeter, calculation of hydraulic coefficients (simple Numericals)</li> </ul> |
| Unit- III<br>Flow through<br>pipes        | <ul> <li>3a. Use the laws of fluid friction in a given condition.</li> <li>3b. Explain different types of losses in pipes and accessories.</li> <li>3c. Calculate the loss of head for a given application.</li> <li>3d. Calculate power and efficiency of transmission through pipes.</li> </ul> | 3.1 Laws of fluid friction, Reynolds number,<br>Major losses, Darcy-Weisbatch equation,<br>Chezy's formula                                                                                                                                                                                                                                                                                             |

GPA

# Fluid Mechanics And Machinery

| Unit– IV<br>Centrifugal<br>Pumps   | <ul> <li>4a. Explain the construction<br/>and working of centrifugal<br/>pump.</li> <li>4b. Explain the construction<br/>and working of<br/>submersible pump.</li> <li>4c. Diagnose faults and<br/>suggest the remedies for<br/>given situation.</li> </ul>                  | <ul> <li>4.1 Application, Construction and working of centrifugal pump, types of casing and impellors, manometricheads, manometriceffi ciency, overallefficiency, NPSHand. Workdo ne of centrifugal pump</li> <li>4.2 Multi-stage pumps, submersible Pumps and jet pumps, cavitation in pumps, Priming of pumps.</li> <li>4.3 Maintenance, fault finding and their remedies in centrifugal pumps, pump selection (No Numerical)</li> </ul> |
|------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit– V<br>Reciprocating<br>pumps  | <ul> <li>5a. Explain the construction<br/>and working of<br/>reciprocating pump.</li> <li>5b. Understand the use of air<br/>vessel.</li> <li>5c. Diagnose faults and<br/>suggest remedies.</li> <li>5d. Compare reciprocating<br/>pump with centrifugal<br/>pump.</li> </ul> | <ul> <li>5.1 Construction, working principle and applications of single and double acting reciprocatingpumps,powerrequirement,indi catordiagram,effect of acceleration and friction in pipes</li> <li>5.2 Concept of Slip, Negative slip, cavitation and separation</li> <li>5.3 Use of Air Vessel</li> <li>5.4 Comparison between Reciprocating pump and centrifugal pump. (No Numerical)</li> </ul>                                      |
| Unit - VI<br>Hydraulic<br>Turbines | <ul> <li>6a. Classify the turbines</li> <li>6b. Explain the working of different types of turbines.</li> <li>6c. Understand the need. Explain the method of governing.</li> </ul>                                                                                            | <ul> <li>6.1 Hydraulic power plant layout, classification<br/>and application of turbines,</li> <li>6.2 Construction and working of Pelton wheel,<br/>Francis and Kaplan turbine.</li> <li>6.3 Draft tubes - types and construction,<br/>cavitations in turbines</li> <li>6.4 Need and method of governing of turbines.<br/>Selection of turbines.<br/>(No Numerical)</li> </ul>                                                           |

# 6. SUGGESTED SPECIFICATION TABLE WITH QUESTION PAPER DESIGN

| Unit | Unit Title                 | Teaching | Distribution of Theory Marks |            |            |             |
|------|----------------------------|----------|------------------------------|------------|------------|-------------|
| No.  |                            | Hours    | R<br>Level                   | U<br>Level | A<br>Level | Total Marks |
| Ι    | Basic concepts             | 06       | 02                           | 06         | 04         | 12          |
| II   | Fundamentals of fluid flow | 08       | 02                           | 04         | 06         | 12          |
| III  | Flow through pipes         | 08       | 04                           | 08         | 06         | 18          |
| IV   | Centrifugal pumps          | 10       | 02                           | 08         | 04         | 14          |
| V    | Reciprocating pumps        | 08       | 02                           | 06         | 04         | 12          |

6M401

GPA

| VI | Hydraulic turbines | 08 | 02 | 06 | 04 | 12 |
|----|--------------------|----|----|----|----|----|
|    | Total              | 48 | 14 | 38 | 28 | 80 |

*Legends:* R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.No. | UnitNo.                                                                         | Title Practical/ Lab. Work/ Assignments/ Tutorials                                          |    |
|--------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|----|
| 1      | Ι                                                                               | To find out mass density, weight density, and specific gravity of liquids and compare them. | 02 |
| 2      | 2 I To study different types of manometers and gauges used in the laboratories. |                                                                                             | 02 |
| 3      | Ι                                                                               | Calculation of pressure with the help of manometers.                                        | 02 |
| 4      | II                                                                              | Calculation of actual discharge on orifice meter                                            | 02 |
| 5      | II                                                                              | To measure the flow by using venturimeter.                                                  | 02 |
| 6      | III                                                                             | To determine loss of head per unit length of pipes for different materials.                 | 04 |
| 7      | III                                                                             | To determine minor losses of head in pipe joints.                                           | 04 |
| 8      | VI                                                                              | Study of layout for a hydroelectric power station.                                          | 04 |
| 9      | IV                                                                              | To find efficiency of a centrifugal pump.                                                   | 04 |
| 10     | V                                                                               | To find efficiency of a reciprocating pump.                                                 | 04 |
| 11     | VI                                                                              | Study and demonstrating working of turbines.                                                | 02 |
|        |                                                                                 | TOTAL                                                                                       | 32 |

#### 8. SUGGESTED STUDENT ACTIVITIES

- 1. Prepare journals based on practical's performed in laboratory.
- 2. Make a list of manufacturers of various hydraulic machines through internet search.
- 3. Visit any two industries manufacturing different types of pumps and prepare a report.
- 4. List any five companies manufacturing pumps and turbines.
- 5. Visit the hydroelectric power station and make a report.

- 6. Search online PPT's, PDF's and video's on the various hydraulic machines.
- 7. Collect the brochures of different types of submersible pumps
- 8. Dissemble a centrifugal pump and enlist the components. Write the procedure.
- 9. Collect the information about troubleshooting procedure of pumps.
- 10. Collect the information of manufacture of multistage pumps.

#### 9. SPECIAL SPECIFIC INSTRUCTIONAL STRATEGIES (if any)

- a. Arrange visits to industries manufacturing different types of pumps.
- b. Motivate students to use internet and collect information of any five hydroelectric power stations.
- c. Arrange expert lecture on various topics of Hydroelectric Power generation.

| Sr. No. | Title of Book                              | Author           | Publication                                       |
|---------|--------------------------------------------|------------------|---------------------------------------------------|
|         |                                            |                  |                                                   |
| 1       | Fluid mechanics and<br>Hydraulic machinery | R. K. Bansal     | Laxmi Publications (P) Ltd.                       |
| 2       | Hydraulics                                 | R. S. Khurmi     | S. Chand and Company                              |
| 3       | Hydraulics                                 | JagdishLal       | Metropolitan Publication Company<br>Pvt. Limited. |
| 4       | Fluid mechanics and<br>Hydraulic machinery | Modi and<br>Seth | Standard Book House, Delhi.                       |

#### **10.SUGGESTED LEARNING RESOURCES**

#### 11.MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS

#### 1. CENTRIFUGAL PUMP TEST SETUP

1. Centrifugal Pump: Variable speed 1 HP centrifugal pump of size 25 mm suction x 25 mm delivery to discharge 1.5 LPS flow at 12 mtr head.

2. Sump Unit : M.S. C.R.C. sheet metal sump of size 900 mm x 450 mm x 350 mm with inside fiber lamination and drain plug.

3. Flow Measurement Unit : M.S. C.R.C. sheet metal measuring tank of size 500 mm x 350 mm

x 450 mm with swinging hopper and fiber lamination from inside. A piezometer level gauge & scale fitting are fitted on measuring tank for discharge measurement.

4. Prime Mover Unit : 1 HP single phase 240 Volt excitation D.C. motor with rigid coupling.

5. Suction & Delivery Piping and fittings are provided with Pressure gauge and vacuum gauge

6. Control Panel Unit : Digital Speed Indicator with speed sensor, On-Off Cam Switch, Energy

meter for Input power measurement, 0 - 230 V., Single phase Auto transformer.

7. Whole unit is fitted on strong and sturdy supporting stand with appreciate color combination powder coating

# 2. RECIPROCATING PUMP TEST RIG

Reciprocating Pump: Size 1" x <sup>3</sup>/<sub>4</sub>" to discharge 60 LPM at 40 meter total head on rated working speed. 1H.P. capacity Pump Test rig set up suitable for pump test at different speeds against different heads.
 Variable speed 1 H.P. capacity D.C. motor with arrangement of quick alteration of speed.

3. Reservoir of size 0.9 m length x 0.55 m width x0.45 m height with gauge glass & scale fitting, drain value of  $\frac{1}{2}$  " size & a bend. M.S. collecting as well as measuring tank of size 0.6 m length x 0.35 m width x 0.45 m height with bypass arrangement & drain value of 1" size.

4. A gauge glass & scale fitting are fitted on measuring tank.

5. Pressure gauge and Vacuum Gauge is mounted on delivery line and Suction line respectively for measurement of delivery head and suction head.

6. Control Panel consists of Energy meter, switch, Speed Controller & digital speed indicator.

7. Strong iron-stand to support the unit. Entire unit is powder coated with good color combination.

# 3. PELTON TURBINE TEST SETUP

1. Turbine Unit :Pelton wheel turbine test rig developing about 1000 watts power at 2.5 bar pressure and 500 LPM discharge. It consists of,

i. Casing : CRC sheet metal casing with transparent window for visualization.

ii. Runner: G.M. runner is fitted with electroplated buckets.

iii. Nozzle & Spear Assembly : Brass designed for smooth flow with stainless steel spear for efficient operation.

2. Centrifugal Pump Unit :

- i. Head : 25 mtr.
- ii. Discharge : 8 LPS.

iii. Power : 5 H.P.

iv. Speed : 2880 RPM

3. Loading Unit :Turbine is directly coupled to Rope Brake Pulley with drum cooling, Spring balance & dead weights.

4. Flow Measurement Unit : A 2" Venturimeter with without mercury differential manometer.

5. Sump Unit :M.S. C.R.C. sheet metal sump of 500 lit. capacity with inside fiber lamination and drain plug.

**6.** Suction & Delivery Piping and fittings are provided with Pressure gauge, foot valve & flow control valve.

- 7. Control Panel Unit : i. Digital Speed Indicator with speed sensor.
- ii. Starter Switch with overload relay.
- 8. Whole unit is fitted on strong and sturdy supporting stand with appreciate color combination.

#### **12. LEARNING WEBSITES AND SOFTWARES**

- a. http://www.learnengineering.org/2014/01/centrifugal-hydraulic-pumps.html
- b. http://www.plant-maintenance.com/articles/centrifugalpumps.pdf
- c. http://www.rotechpumps.com/basic-configuration-working-centrifugal-pumps-2
- d. https://www.youtube.com/watch?v=BaEHVpKc-1Q
- e. http://www.pumpsandsystems.com/topics/pumps/characteristics-centrifugal-pumps-0912
- f. https://www.youtube.com/watch?v=oQqMrtc6kJQ
- g. http://www.indiastudychannel.com/resources/155250-Construction-working-
- h. Reciprocating-Pump.aspx
- i. http://www.turboindustries.com/
- j. http://nptel.ac.in/courses/101101058/
- k. http://www.learnengineering.org/2013/08/Turbomachinery.html

### 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO. | Course Outcome                                                                                     | PO 1 | PO | PS  | PS  |
|-----|----------------------------------------------------------------------------------------------------|------|----|----|----|----|----|----|----|----|----|-----|-----|
| NO. |                                                                                                    |      | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | O 1 | O 2 |
| CO1 | List basic properties of the fluid.                                                                | 2    | 3  | 1  | -  | -  | -  | -  | -  | -  | -  | -   | 1   |
| CO2 | Measure the parameters such as<br>pressure, velocity and flow rate by<br>means of various devices. | 1    | 3  | 3  | -  | -  | -  | -  | -  | -  | -  | -   | 3   |
| CO3 | Calculate major and minor losses<br>in a piping system.                                            | 1    | 3  | 3  |    | 2  | -  | -  | -  | -  | -  | -   | -   |
| CO4 | Conduct trial on hydraulic<br>machines and draw operating<br>performance curves.                   | 1    | 3  | 3  |    | 2  | -  | -  | -  | -  | -  | -   | 3   |
| CO5 | Select pumps and turbines for a particular application.                                            | 1    | 3  | 3  | -  | -  | -  | -  | 2  | -  | -  | -   | 3   |
| CO6 | Locate faults in pumps and<br>turbines and suggest remedies                                        | 1    | 3  | 2  | -  | -  | -  | -  | 2  | -  | -  | -   | 3   |

# **Course Curriculum Design Committee**

| SrNo | Name of the     | Designation and Institute                                            |
|------|-----------------|----------------------------------------------------------------------|
|      | faculty members |                                                                      |
| 1    | A.W Nemade      | Lecturer in Mechanical Engineering, Govt.<br>Polytechnic, Aurangabad |
| 2    | A.B Deshpande   | Lecturer in Mechanical Engineering, Govt.<br>Polytechnic, Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLE MACHINING PROCESSES

COURSE CODE 6M202

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Third                     |

#### 1. RATIONALE

The diploma technicians are often come across various machining process in practice. It is therefore very important to known the fundamentals of various types of the chip forming processes and the tools used for the same. These will help the diploma technician to handle and improve the practical knowledge effectively. Basics of the common chip forming processes used are introduced at this course.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Produce components using various types of machining processes."

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme Total             |   |                    |        | Examination Scheme (Marks) |       |             |            |     |
|-----------------------------------|---|--------------------|--------|----------------------------|-------|-------------|------------|-----|
| (Hours/ Credits)                  |   | Credits<br>(L+T+P) | Theory |                            | Pract | Total       |            |     |
| L                                 | Т | Р                  | С      | ESE                        | PT    | ESE<br>(PR) | PA<br>(TW) |     |
| 2                                 | - | 4                  | 6      | 80                         | 20    | 50#         | 50         | 200 |
| Duration of the Examination (Hrs) |   |                    | 03     | 01                         |       |             |            |     |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ;**PR**- Practical; C- Credits; ESE- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Interpret mechanics of metal cutting.
- 2. Analyze lathe machine parts and operation.
- 3. Summarize drilling machine operations.
- 4. Describe boring machine operation.
- 5. Evaluate working of shaping, planning, slotting & broaching machines
- 6. Produce jobs using various machines

# 5. DETAILED COURSE CONTENTS

| Unit               | Major Learning Outcomes           | Topics and Sub-topics                 |
|--------------------|-----------------------------------|---------------------------------------|
|                    | (in cognitive domain)             |                                       |
| Unit –I            | 1a. Describe single point cutting | Mechanics Of Metal Cutting            |
| Mechanics Of Metal | tool with nomenclature.           | 1.1 Tool geometry and tool            |
| Cutting            |                                   | signature of single point             |
|                    | 1b. Describe chip formation       | cutting tools.                        |
|                    | processes.                        | 1.2 Chip formation, continuous        |
|                    |                                   | chip, discontinuous chip, Built-      |
|                    | 1c. Select Chip breakers          | up edge,                              |
|                    |                                   | 1.3 Chip breaker, cutting tool        |
|                    | 1d. Use of cutting fluids in      | materials, cutting fluids,            |
|                    | machining processes.              | 1.4 Introduction to multi-edge        |
|                    |                                   | cutting tools eg. twist drills,       |
|                    |                                   | milling cutters.                      |
| Unit– II           | 2a. Explain constructional        | Metal Turning                         |
|                    | details and specification of      | 2.1 Introduction of centre lathe,     |
| Metal Turning      | lathe machines.                   | classification, basic parts of centre |
|                    | 2b. Identify different operations | lathe and their functions, lathe      |
|                    | to be performed on a job          | specification, lathe operations.      |
|                    | 2c. Calculate taper angle and     | Center lathe accessories,             |
|                    | set compound rest                 | attachments. Cutting parameters       |
|                    | accordingly.                      | and machining time calculations       |
|                    | 2d. Select relevant machining     | (simple numerical)                    |
|                    | parameters for a given job.       | 2.2 Introduction to Capstan and       |
|                    | 2e. Compute machining time        | turret lathes and automats, tooling   |
|                    | for a given jobs                  | set-ups, different attachments and    |
|                    | 2f. Describe turret head,         | accessories, tool layout.             |
|                    | stoppers, indexing                |                                       |
|                    | mechanism, auto feeding.          |                                       |

| 6M202                                       | GPA                                                                                                                                                                                                                                                                                                                                                                 | Machining Processes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|---------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| 6M202<br>Unit–III<br>Drilling Machines      | GPA<br>3a. Explain constructional<br>details and specification of a<br>given drilling machines. And<br>locate different parts<br>3b. Identify different operations<br>to be performed on a job.<br>3c. select drill and mount in<br>spindle.<br>3d. Describe the nomenclature<br>of standard twist drill.<br>3e.Differentiate countersinking<br>and counter boring. | Machining Processes         Drilling Machines         3.1 Classification of drilling machines, principal parts, specifications, accessories,         3.2 Operations such as drilling, reaming, tapping, tapping attachment, deep drilling, step drilling, counter boring, etc.         3.3 Cutting parameters and machining time calculations (simple numerical)                                                                                                                                       |  |  |
| Unit – IV<br>Boring                         | <ul> <li>3f. Compute machining time for a given jobs</li> <li>4a.Explain constructional details and specification of a boring m/c.</li> <li>4b.Differentiate between drilling and boring.</li> <li>4c.Explain boring heads, boring bars.</li> <li>4d.Application of boring tools</li> </ul>                                                                         | <ul> <li>3.4 Types of drills</li> <li>Boring</li> <li>4.1 Introduction to boring machines, description of boring machines, standard specifications of boring machines.</li> <li>4.2 Boring bars,boring heads, boring tools.</li> </ul>                                                                                                                                                                                                                                                                 |  |  |
| Unit– V<br>Shaping, Planing<br>And Slotting | <ul> <li>5a. Explain constructional details and specification of a shaping m/c.</li> <li>5b. locate different parts of shaping m/c</li> <li>5c. Describe quick return mechanism, feed mechanism</li> <li>5d. Identify the basic parts of planning machine.</li> <li>5e. Describe slotting machine.</li> <li>5f. Identify parts of slotting machine.</li> </ul>      | <ul> <li>Shaping, Planing And Slotting</li> <li>5.1 Classification, principal parts<br/>of shaping machines, quick return<br/>mechanism, operation performed<br/>on shaper,</li> <li>5.2 Horizontal shaping machines<br/>and their specifications,<br/>adjustment of stroke length and<br/>positioning of Ram.</li> <li>5.3 Types of planning machines,<br/>principal parts of planning<br/>machines, operations<br/>performed on planning<br/>machines, specifications,<br/>cutting tools.</li> </ul> |  |  |

6M202

|           |                                                                                                                                        | 5.4 Description of slotting machines,<br>specification, and operations<br>performed, cutting tools used                                        |  |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| Unit– VI  | 6a.Explain constructional details                                                                                                      | Broaching                                                                                                                                      |  |  |
| Broaching | <ul><li>and specification of a broaching m/c.</li><li>6b.Classify broaching operations</li><li>6c. Application of broaching.</li></ul> | <ul><li>6.1 Introduction to broaching operation, types of broaching machines.</li><li>6.2 Broaching tools, applications of broaching</li></ul> |  |  |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                      | Teaching | D          | istribution | n of Theory | / Marks     |
|------|---------------------------------|----------|------------|-------------|-------------|-------------|
| No.  |                                 | Hours    | R<br>Level | U<br>Level  | A<br>Level  | Total Marks |
| Ι    | Mechanics Of Metal Cutting      | 06       | 02         | 06          | 04          | 12          |
| II   | Metal Turning                   | 06       | 04         | 08          | 06          | 18          |
| III  | Drilling Machines               | 05       | 04         | 06          | 04          | 14          |
| IV   | Boring                          | 04       | 02         | 04          | 04          | 10          |
| V    | Shaping Planing and<br>Slotting | 08       | 04         | 08          | 06          | 18          |
| VI   | Broaching                       | 03       | 02         | 04          | 02          | 08          |
|      |                                 | 32       | 18         | 36          | 26          | 80          |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

| Sr No. | Unit No. | Practical Exercises                                                                                                                                                 | Approx.  |
|--------|----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
|        |          | (Outcomes in Psychomotor Domain)                                                                                                                                    | Hrs.     |
|        |          |                                                                                                                                                                     | required |
| 1      | Ι        | Regrind the single point cutting tool                                                                                                                               | 04       |
| 2      | II       | Turning                                                                                                                                                             | 20       |
|        |          | Plain Turning,                                                                                                                                                      |          |
|        |          | Step Turning,                                                                                                                                                       |          |
|        |          | Taper Turning,                                                                                                                                                      |          |
|        |          | Grooving,                                                                                                                                                           |          |
|        |          | Chamfering,                                                                                                                                                         |          |
|        |          | Thread Cutting                                                                                                                                                      |          |
| 3      | III      | Drilling and Boring                                                                                                                                                 | 08       |
|        | &        | Prepare a job containing drilling and boring operation as per                                                                                                       |          |
|        | IV       | given drawing.                                                                                                                                                      |          |
| 4      | V        | Shaping machine, Planning machine and Slotting Machine                                                                                                              | 18       |
|        |          | a) Plain Shaping                                                                                                                                                    |          |
|        |          | b) Angular Shaping                                                                                                                                                  |          |
| 5      | VI       | Prepare a job containing broaching operation as per given<br>drawing (like holes of circular, square, or irregular shapes,<br>keyways and teeth of internal gears.) | 14       |
|        |          | Total                                                                                                                                                               | 64       |

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

#### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

1) Prepare journal for practicals.

- 2) Visit to concern industries.
- 3) Write specifications of different machine tools observed during industrial visits.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

#### **10. SUGGESTED LEARNING RESOURCE**

| Sr No. | Title of Book                         | Author                 | Publication                                                  |
|--------|---------------------------------------|------------------------|--------------------------------------------------------------|
|        |                                       |                        |                                                              |
| 1      | Workshop Technology<br>Vol. II        | Hajra, Choudhary       | Media promoters and publishers<br>limited (ISBN 97881850991) |
| 2      | Workshop Technology<br>Vol.1I         | P.N.Rao                | Mcgraw hill<br>(ISBN 9781259081231)                          |
| 3      | Production Technology<br>Vol. II      | Khanna O.P. and<br>Lal | Dhanpat rai publications,New<br>Delhi                        |
| 4      | Hand book on production<br>Technology | НМТ                    | Tata Mcgraw hill<br>(ISBN 9780070964433)                     |
| 5      | Workshop Technology<br>Vol.1          | Raghuwanshi,           | Dhanpat rai and sons                                         |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S.<br>No. | Name of equipment                                                                                    | Brief specification           |
|-----------|------------------------------------------------------------------------------------------------------|-------------------------------|
| 1.        | Hacksaw                                                                                              | As per Workshop specification |
| 2.        | Lathe with standard and special accessories                                                          | As per Workshop specification |
| 4         | Milling machines-Vertical and Horizontal<br>with standard accessories and<br>indexing/dividing head. | As per Workshop specification |
| 5         | Column drill.                                                                                        | As per Workshop specification |
| 6         | Radial Drill                                                                                         | As per Workshop specification |
| 7         | Slotting                                                                                             | As per Workshop specification |
| 8         | Planning                                                                                             | As per Workshop specification |
| 9         | Tool and cutter grinder                                                                              | As per Workshop specification |
| 10        | Automats-turret and capstan.                                                                         | As per Workshop specification |
| 11        | • Required cutting tools-HSS and Carbides.                                                           | As per Workshop specification |
|           | • Required cutting tool holders.                                                                     |                               |

#### 12. LEARNING WEBSITE & SOFTWARE

- a. http://nptel.iitm.ac.in/video.php?subjectId=112105126
- b. http://nptel.iitm.ac.in/courses/Webcoursecontents/IIT%20Kharagpur/Manuf%20Proc %20II/pdf/LM-01.pdf
- c. http://www.youtube.com/watch?v=H0AyVUfl8/k&list=PLEFE7D1579523C45D
- d. http://www.youtube.com/watch?v=FFzRIop5bpg&list=PL843C2A830C65E2EE
- e. http://www.youtube.com/watch?v=81Fdif5e85c
- f. http://www.youtube.com/watch?v=A0dTvf\_Q8BA&list=PL2C105C94D2955C8B
- g. http://www.youtube.com/watch?v=tDc0l9Gm8D4&list=PL3AFB507B668AF162
- h. http://www.youtube.com/watch?v=THVgkBnjLq0
- i. http://www.youtube.com/watch?v=6VpCBk7FahI
- j. http://www.youtube.com/watch?v=7wC1u4WOV1o
- k. http://www.youtube.com/watch?v=VDIoUZuTunI
- 1. http://www.youtube.com/watch?v=fGqc9mZS0YI
- m. http://www.youtube.com/watch?v=Mn9jpqI8rao

- n. http://www.youtube.com/watch?v=8SuoH5aL1SY
- o. http://www.youtube.com/watch?v=xxNZSQML\_ZA
- p. <u>http://www.youtube.com/watch?v=XXUHZxweBcw&list=PLD07DE61CB871A0CB</u>

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| SNo | Course Outcome                                                               |   |   |   |   | PO | Os |   |   |   |    | PSOs |    |
|-----|------------------------------------------------------------------------------|---|---|---|---|----|----|---|---|---|----|------|----|
|     |                                                                              | 1 | 2 | 3 | 4 | 5  | 6  | 7 | 8 | 9 | 10 | 01   | 02 |
| 1   | Interpret mechanics of metal cutting.                                        | 3 | 2 | 2 | 1 | -  | -  | - | - | - | 2  | 2    | 2  |
| 2   | Analyze lathe machine parts and operation.                                   | 2 | 2 | 3 | 2 | 2  | 1  | - | - | - | 2  | 2    | 3  |
| 3   | Summarize drilling machine operations.                                       | 1 | 2 | 3 | 2 | -  | 1  | - | - | - | 2  | 1    | 1  |
| 4   | Describe boring machine operation.                                           | 1 | 2 | 3 | 2 | -  | -  | - | - | - | 1  | 1    | 2  |
| 5   | Evaluate working of<br>shaping,planning,slotti<br>ng & broaching<br>machines | 2 | 2 | 3 | 3 | 1  | 1  | - | - | - | 1  | 2    | 3  |
| 6   | Produce jobs using various machines                                          | 1 | 2 | 3 | 3 | 1  | 1  | 1 | 2 | 1 | 2  | 2    | 3  |

#### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 D.V.Tammewar Workshop Superintendent, Govt. Polytechnic, Aurangabad
- 2 S.V.Borde Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEMECHANICAL ENGINEERING MATERIALSCOURSE CODE6M410

GPA

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Third                     |

#### 1. RATIONALE

Mechanical Engineering applications involve use of different materials with varied compositions, properties and applications. A diploma engineer should have a sound knowledge of different materials, their properties and applications. Course objective is to impart knowledge to students so that they are capable to select material as per need & requirement and study different heat treatment processes.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Identify and select the proper materials as per BIS, British, AISI standards for the different engineering applications considering their structure-property-application relationships."

#### **3. TEACHING AND EXAMNATION SCHEME**

| Teaching Scheme Total |           | Examination Scheme (Marks) |                    |       |     |       |      |       |
|-----------------------|-----------|----------------------------|--------------------|-------|-----|-------|------|-------|
|                       | Hours/ C  |                            | Credits<br>(L+T+P) | Theo  | ory | Pract | ical | Total |
| L                     | Т         | Р                          | С                  | ESE   | РТ  | ESE @ | PA   |       |
|                       |           |                            |                    |       |     | (OR)  | (TW) | 150   |
| 3                     | -         | 2                          | 5                  | 80 20 |     | 25#   | 25   | 150   |
| Du                    | ration of | the Examin                 | ation (Hrs)        | 03    | 01  |       |      |       |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online.

## 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Identify and suggest particular material for specific engineering application considering property requirements.
- 2. Use of microscope to observe different microstructure of given specimen.
- 3. Conduct heat treatments on various materials and analyze the changes in structure properties.
- 4. Use material specification catalogues of material standards like BIS, British, AISI.
- 5. Analyze alloy steels, cast iron and non ferrous materials in view of types, properties and applications

| Unit                                                  | Major Learning<br>outcomes                                                                                                                                                                       | Topics and sub topics                                                                                                                                                                                                                                                                                                                                                                                                     |
|-------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-I<br>Structure of<br>materials and<br>properties | <ul> <li>1a. Classify various types of materials</li> <li>2a. Draw microstructure by observing under a microscope</li> <li>3a. Correlate properties of materials with their structure</li> </ul> | <ul> <li>1.1 Classification of materials as amorphous and crystalline, ferrous, non-ferrous</li> <li>1.2 Crystal structure of metals, Space Lattice and Types of unit cells with particular reference to iron. Concept of packing density.</li> <li>1.3 Common properties of metals such as tensile strength, elasticity,Plasticity,hardness, Ductility, impact strength, magnetic permeability and hysteresis</li> </ul> |

#### 5. DETAILED COURSE CONTENTS

| Unit-II<br>Equilibrium<br>diagrams                           | <ul> <li>2a Describe the meaning of various metallurgical terms.</li> <li>2b Compare different solid solutions w.r.t.structure and properties.</li> <li>2c Draw and analyze various equilibrium diagrams for different alloy systems.</li> </ul>                                                                                                                      | <ul> <li>2.1 Definitions of phase, pure metal ,alloy, their properties</li> <li>2.2 Solid solutions as Substitutional,Interstitial, concept of solid stability, solidification of pure metal, alloys,</li> <li>2.3 Cooling curves for pure metals and alloys, Lever rule Equilibrium diagrams for isomorphous, Eutectic solid solubility systems, peritectic systems, eutectoid systems. Calculation of phases in alloy by lever rule</li> <li>2.4 Allotropy of pure iron</li> </ul>                                                                                                                                                                                                |
|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-III<br>Iron carbon diagram<br>and steels, cast<br>irons | <ul> <li>3a Draw Iron carbon<br/>diagram.</li> <li>3b Describe various<br/>reactions on iron carbon<br/>diagram.</li> <li>3c Classify Iron carbon<br/>alloys on diagram as<br/>steels and cast irons<br/>based on carbon<br/>percentage .</li> <li>3d Draw microstructure of<br/>steels and cast irons of<br/>various compositions at<br/>room temperature</li> </ul> | <ul> <li>3.1 Iron carbon equilibrium diagram, detailed study of various phases such as alpha ferrite, cementite, Delta ferrite, Pearlite, Gamma Austenite, Ledeburite, Transformed Ledeburite. Three reactions of iron carbon diagram i.e Eutectic, eutectoid and peritectic reaction , critical temperature,</li> <li>3.2 Concept of steels and cast irons on diagram as hypo eutectoid, eutectoid, hypereutectiod Steels and C.I, classification of steels based on chemical composition as plain carbon steels and alloy steels, low, medium and high carbon steels, etc. (Introduction only).Classification of cast irons as white, gray,nodular,etc.(introduction.)</li> </ul> |

GPA

Mechanical Engineering Materials

|                                        |                                                                                                                                                                                                                                               | <ul> <li>3.3 Study and analysis of<br/>microstructures of hypoeutectoid,<br/>eutectoid, hypereutectoid Steels<br/>and hypoeutectic, eutectic,<br/>hypereutectic Cast Irons from<br/>Iron Carbon Diagram.</li> <li>3.4 Variation in properties and<br/>structure in hypoeutectoid,<br/>eutectoid, hypereutectoid Steels<br/>and hypoeutectic, eutectic,<br/>hypereutectic Cast iron</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-IV<br>Heat treatment of<br>steels | <ul> <li>4a Describe the procedure to conduct various heat treatments.</li> <li>4b Compare various heat treatments.</li> <li>4c Interprete structure – property relationships in every heat treatment and its practical relevance.</li> </ul> | <ul> <li>4.1. Transformations in steel on heating- conversion of pearlite to austenite, transformation of austenite to pearlite, non-equilibrium cooling, time temperature transformation (TTT), curves for eutectoid, hypoeutectoid and hypereutectoid steels, continues cooling rates and isothermal cooling.</li> <li>4.2 Hardening &amp; Tempering: Purpose of hardening temperature, conventional hardening process, martempering, structure of martensite and properties, quenching mediums, hardening defects, hardening of steels, Jommy end quench test. Purpose of tempering, low temperature, medium temperature and high temperature tempering.</li> <li>4.3 . Annealing : Purpose of annealing, processes like full annealing, isothermal annealing, spherodising annealing, etc. Annealing, temperature</li> </ul> |

|                        |                                                                                                                                                                                                                                                                                                                                                                         | Range.Applications.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        |                                                                                                                                                                                                                                                                                                                                                                         | <ul> <li>4.4. Normalizing :Purpose of normalizing, normalizing processes, normalizing temperature range. Applications.</li> <li>4.5. Subzero treatment:<br/>Retained austenite and its effects, purpose of Subzero treatment, applications as measuring tools.Applications.</li> </ul>                                                                                                                                                                                                                                                       |
|                        |                                                                                                                                                                                                                                                                                                                                                                         | 4.6 Surface Heat Treatment<br>Processes: Classification, Need<br>of surface hardening of steels,<br>variation of properties from<br>surface to center, flame<br>hardening, induction hardening<br>with application, case hardening<br>methods, carburizing, nitriding,<br>Cyaniding.(Applications of these<br>processes .)                                                                                                                                                                                                                   |
| Unit-V<br>Alloy steels | <ul> <li>5a Select the proper alloy<br/>steels for particular<br/>applications</li> <li>5b Differentiate between<br/>plain carbon steels and<br/>alloy steels</li> <li>5c Correlate structure –<br/>property relationships of<br/>alloy steels.</li> <li>5d Use material specification<br/>catalogues of material<br/>standards like BIS,<br/>British, AISI.</li> </ul> | <ul> <li>5.1 Definition of alloy steels,<br/>classification of alloy steels,<br/>Difference between Plain<br/>carbon steels and alloy steels</li> <li>5.2 Effect of alloying element on<br/>Iron- Carbon diagram, TTT<br/>diagram, effects of alloying<br/>elements on properties,<br/>Hardenability of steels.</li> <li>5.3 Types of alloy steels as Cold<br/>work tool steels, Hot work<br/>tool steels, Oil Hardening<br/>Non Shrinking (OHNS)<br/>steels, High Carbon High<br/>Chromium (HCHC)<br/>STEELS, High Speed Steels,</li> </ul> |

|                                           |                                                                                                                                                                                                                                                                  | <ul> <li>Steels, Hadfield Manganese</li> <li>Steels, Free Cutting</li> <li>Steels,Magnetic Steels their</li> <li>structure, composition</li> <li>applications/uses and heat</li> <li>treatments.</li> <li>5.4 Indian standard and</li> <li>American standard, British</li> <li>specifications, of plain</li> <li>carbon steels and alloy steels</li> </ul>                                                                |
|-------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-VI<br>Cast irons                     | <ul> <li>6a Differentiate between<br/>steels and cast irons</li> <li>6b Compare different types<br/>of cast irons</li> <li>6c Select suitable cast irons<br/>for particular<br/>applications.</li> <li>6d Interpret specifications of<br/>cast irons.</li> </ul> | <ul> <li>6.1. Definition and classification of cast irons. Comparison of cast irons with steels</li> <li>6.2 Types of cast irons as White cast irons, Gray Cast irons, Malleable Cast Irons, Nodular, cast irons, Alloy cast their structure, properties and practical applications/uses.</li> <li>Production of Malleable, Nodular cast irons. Indian standard specifications of various types of cast irons.</li> </ul> |
| Unit-VII<br>Non- ferrous<br>metals/alloys | <ul> <li>7a Select suitable non<br/>ferrous metals and alloys<br/>for specific applications.</li> <li>7b Compare different non<br/>ferrous alloys and metals.</li> </ul>                                                                                         | <ul> <li>7.1 Common non-ferrous metals,<br/>physical properties and applications<br/>of metals like copper, Aluminum,<br/>Tin</li> <li>7.2 Non ferrous alloys like Bronze,<br/>Brasses, Tungsten, Lead, Tin base<br/>lead based alloys, bearing metals,<br/>gun metals, etc. their composition,<br/>properties and practical<br/>applications/use. Specifications for<br/>non ferrous alloys</li> </ul>                   |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit<br>No | Unit Name                                  | Teaching<br>Hours | Distril    | oution of 7 | Theory M   | larks          |
|------------|--------------------------------------------|-------------------|------------|-------------|------------|----------------|
| INO        |                                            | Hours             | R<br>Level | U<br>Level  | A<br>Level | Total<br>marks |
| 1          | Structure of materials and properties      | 5                 | 2          | 4           | -          | 6              |
| 2          | Equilibrium diagrams                       | 5                 | 2          | 3           | 3          | 8              |
| 3          | Iron carbon diagram and steels, cast irons | 5                 | 2          | 3           | 3          | 8              |
| 4          | Heat treatment of steels                   | 13                | 4          | 12          | 6          | 22             |
| 5          | Alloy steels                               | 7                 | 3          | 4           | 5          | 12             |
| 6          | Cast irons                                 | 7                 | 3          | 4           | 5          | 12             |
| 7          | Non-ferrous metals/alloys                  | 6                 | 4          | 4           | 4          | 12             |
|            | Total                                      | 48                | 20         | 34          | 26         | 80             |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/ programme outcomes. Following is the list of practical exercises for guidance.

**Note**: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of certain outcomes in affective domain which would in turn lead to development of **Course Outcomes** related to affective domain. Thus over all development of **Programme Outcomes** (as given in a common list at the beginning of curriculum document for this programme) would be assured.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

6M410

GPA

| Mec   | hanical | Engin | eering | Materia     | ls |
|-------|---------|-------|--------|-------------|----|
| 1.100 | numeui  |       |        | i i acci ia | 10 |

| Sr | Unit    | Practical Exercises                                                                                                       | Approx   |
|----|---------|---------------------------------------------------------------------------------------------------------------------------|----------|
| No | No      |                                                                                                                           | Hours    |
|    |         |                                                                                                                           | Required |
|    |         | Use and handling of Metallurgical Microscope                                                                              |          |
|    |         |                                                                                                                           |          |
|    |         | a Analysis of principle & working of metallurgical microscope.                                                            |          |
|    | 1       | b Study of different parts of microscope along with their                                                                 |          |
| 1  | 1       | function.                                                                                                                 | 04       |
|    |         | c Setting of different magnifications on microscope by handling<br>&note magnification value                              |          |
|    |         | d Observation and record of at least 3 microstructures of steels<br>and cast irons on microscope                          |          |
| 2  | 1,2,3,4 | Preparation of specimens of steels and cast irons                                                                         | 02       |
| 2  | 1,2,3,4 | reparation of spectmens of steels and cast nons                                                                           | 02       |
|    |         | Determination of Rockwell hardness C scale of hardened and                                                                |          |
|    |         | unhardened specimens of steels on Rockwell Hardness tester.                                                               | 02       |
| 3  | 1       | Determination of Brinell Hardness number for specimens of                                                                 | 02       |
|    |         | Grey cast iron,Malleable, Nodular Cast Iron specimens on<br>Brinell hardness Tester. (Any one)                            |          |
|    |         |                                                                                                                           |          |
| 4  | 3,4     | Analysis of Iron carbon diagram and TTT diagrams from heat                                                                | 04       |
| 4  | 5,4     | treatment point view for plain carbon steels and alloy steels<br>and systematic recording.                                | 04       |
|    |         |                                                                                                                           |          |
|    |         | Observations and systematic recording of micro structures.<br>Pure iron 0.1% carbon steel ,0.2 %, 0.4% carbon steels, 0.8 |          |
| 5  | 2, 3,   | and 1.2% carbon steels, White, gray, malleable, nodular, cast                                                             | 02       |
| 0  | 4,6     | irons. Alloy steels and hardened steels.by observing prepared                                                             |          |
|    |         | specimens on metallurgical microscope                                                                                     |          |
|    |         | Analysis and Operation of Muffle furnace                                                                                  |          |
|    |         |                                                                                                                           | 02       |
|    |         | a Study of principle of operation and parts of laboratory muffle furnace.                                                 |          |
| 6  | 2,4,6,7 |                                                                                                                           | 02       |
|    |         | b Operation of Muffle Furnace by following operation manual.                                                              |          |
|    |         | Setting temperature on furnace.Noting temperatures while<br>heating and slow cooling of furnace and determining heating   |          |
|    |         | rate and cooling rate for furnace by plotting graphs                                                                      |          |
|    |         |                                                                                                                           |          |

|    |         | c Analysis and study of Temperature measuring Thermocouple in furnace.                                                                                                                                                                                                                                                                                                               | 02 |
|----|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 7  | 4       | Study of Heat treatments like Hardening, Annealing and Normalizing on 0.8 % carbon steel specimen in muffle furnace.                                                                                                                                                                                                                                                                 | 02 |
| 8  |         | Study of Jominy end quench test for hardenability of steels                                                                                                                                                                                                                                                                                                                          | 04 |
| 9  | 4,5,6,7 | Selection of proper materials by use of Indian standard and<br>American standard, British specifications tables for following<br>components All types of Gears,Shafts,Axles,,Bearings,<br>springs, shear blades, household utensils, pistons, crankshafts,<br>camshafts, castings, Agricultural implements, turbine blades,<br>Pistons, crank shafts, connecting rods,castings, etc. | 04 |
| 10 | 2,3     | Analysis of End color coding of steels                                                                                                                                                                                                                                                                                                                                               | 02 |
|    |         | Total                                                                                                                                                                                                                                                                                                                                                                                | 32 |

#### Notes:

a. It is compulsory to prepare a journal for exercises. It is also required to get each exercise recorded in journal, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.

b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.

c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.

d. Student activities are compulsory and are part of term work.

e. Term work content of industrial visit report should also include following.

i. Brief details of industry visited.

ii. Type, location, products, rough layout, human resource, etc of industry.

iii. Details, description and broad specifications of machineries/ processes observed.

iv. Safety norms and precautions observed.

v. Student's own observation on industrial environment, productivity concepts, quality consciousness and quality standards, cost effectiveness, culture and attitude.

vi. Any other details / observations asked by accompanying faculty.

For practical ESE part, students are to be assessed for competencies achieved. They should be assigned the necessary data and should be given any one experience to perform.

# Mechanical Engineering Materials

# 8. SUGGESTED STUDENTS ACTIVITIES

| Sr No | Activities                                                                                                                                                                      |  |  |  |  |  |  |
|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 1     | Search different journals on ASME / SAE                                                                                                                                         |  |  |  |  |  |  |
| 2     | Collect info of Indian standard and American standard, British specifications                                                                                                   |  |  |  |  |  |  |
| 3     | Collect various samples of components of p.c.steels, alloy steels, cast irons, non ferrous alloys from industry                                                                 |  |  |  |  |  |  |
| 4     | Identify equitant grades of steels from Indian standard and American standard,<br>British specifications and find out their application areas.                                  |  |  |  |  |  |  |
| 5     | Collect and study practical data sheets of various heat treatment of steels from industries                                                                                     |  |  |  |  |  |  |
| 6     | Identify various type steels, their specifications and applications used in the workshop of your college.                                                                       |  |  |  |  |  |  |
| 7     | Prepare the flow process chart for various heat treatments                                                                                                                      |  |  |  |  |  |  |
| 8     | Collection and record on data on prices and sizes of available plain carbon<br>steels,Alloy steels,Non ferrous alloys, cast irons available in market from dealers/<br>Websites |  |  |  |  |  |  |
| 9     | Visit to Heat treatment Shop                                                                                                                                                    |  |  |  |  |  |  |
| 10    | Visit to Steel rolling Mill using steel scrap for manufacturing of rolled products like angles, bars, channels, girders.                                                        |  |  |  |  |  |  |

# 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

| Sr | Unit | Unit name                                  | Strategy                                                                         |  |  |  |  |
|----|------|--------------------------------------------|----------------------------------------------------------------------------------|--|--|--|--|
| no | no   |                                            |                                                                                  |  |  |  |  |
| 1  | 1    | Structure of materials and properties      | Class room instructions ,Net survey,                                             |  |  |  |  |
| 2  | 2    | Equilibrium diagrams                       | Class room instructions ,Net survey,Videos                                       |  |  |  |  |
| 3  | 3    | Iron carbon diagram and steels, cast irons | Live explanation, movie,                                                         |  |  |  |  |
| 4  | 4    | Heat treatment of steels                   | Class room instructions, Videos, PPT, Practical demonstrations, Industrial vists |  |  |  |  |
| 5  | 5    | Alloy steels                               | Class room instructions ,Net survey, Case study, industrial visits               |  |  |  |  |
| 6  | 6    | Cast irons                                 | Class room instructions ,Net survey, Case study, industrial visits               |  |  |  |  |
| 7  | 7    | Non-ferrous metals/alloys                  | Class room instructions ,Net survey, Case study, industrial visits               |  |  |  |  |

# 10. SUGGESTED LEARNING RESOURCE

| Sr | Title of Book                       | Author         | Publication                  |
|----|-------------------------------------|----------------|------------------------------|
| no |                                     |                |                              |
| 1  | Material Science and<br>Metallurgy  | O.P.Khanna.,   | Dhanpatrai and sons          |
| 2  | Material Science and<br>Metallurgy  | V.D.Kodgire    | . Everest publication        |
| 3  | Engineering Metallurgy Vol I&<br>II | Higgins.       | Prentice Hall                |
| 4  | Physical Metallurgy                 | Avner          | Tata Macgrawhill             |
| 5  | Physical Metallurgy Vol I<br>& II   | Khangaonkar.   | Pune Vidyarthi Gruha         |
| 6  | Material Science                    | Narang.        | Khanna Publication           |
| 7  | Physical Metallurgy                 | Clarke Warne   | Prentice Hall                |
| 8  | Engineering Metallurgy              | Ramarao & Vyas | Nit din publications Nagpur. |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.No. | Major equipment/ Instrument with Broad SpecificationQuantity              |    |  |  |  |
|--------|---------------------------------------------------------------------------|----|--|--|--|
| 1      | Metallurgical Microscope 01                                               |    |  |  |  |
| 2      | Rockwell Hardness tester                                                  | 01 |  |  |  |
| 3      | Brinell Hardness Tester                                                   | 01 |  |  |  |
| 4      | Belt Grinder 01                                                           |    |  |  |  |
| 5      | Polishing Machine 01                                                      |    |  |  |  |
| 6      | Speciment Mounting Press 01                                               |    |  |  |  |
| 7      | Mounted specimen set of various steels, cast irons and non ferrous 01 set |    |  |  |  |
|        | metals and alloys                                                         |    |  |  |  |
| 8      | Laboratory Muffle furnace with capacity of 0-1200 °C01                    |    |  |  |  |
| 9      | Specification catalogues for Indian standard and American standard,       |    |  |  |  |
|        | British specifications                                                    |    |  |  |  |

#### **12. LEARNING WEBSITE & SOFTWARE**

i. https://en.wikipedia.org/wiki/ASTM\_International

ii. https://www.astm.org/

iii. https://en.wikipedia.org/wiki/Heat\_treating

iv. www.pg.gda.pl/~kkrzyszt/Topic%2010.pdf

 $v.\ https://www.youtube.com/watch?v=98lh5Q0M0cg$ 

vihttps://www.youtube.com/watch?v=ulfCxDsVTWo

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO.  | Course Outcome                           | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р | Р |
|------|------------------------------------------|---|---|---|---|---|---|---|---|---|----|---|---|
| NO.  |                                          |   | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | S | S |
|      |                                          | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 0 | 0 |
|      |                                          |   |   |   |   |   |   |   |   |   |    | 1 | 2 |
|      | Identify and suggest particular material |   |   |   |   |   |   |   |   |   |    |   |   |
|      | for specific engineering application     | 3 | 2 | 2 | _ | _ | 2 |   | - | _ | 2  | _ | - |
| CO 1 | considering property requirements.       |   |   |   |   |   |   |   |   |   |    |   |   |
|      |                                          |   |   |   |   |   |   |   |   |   |    |   |   |
|      | Use of microscope to observe different   |   |   | _ |   |   |   |   |   |   |    |   |   |
| CO 2 | microstructure of given specimen.        | 3 | 2 | 3 | - | - | 1 | - | - | - | 1  | - | - |
|      |                                          |   |   |   |   |   |   |   |   |   |    |   |   |
|      | Conduct heat treatments on various       |   |   |   |   |   |   |   |   |   |    |   |   |
|      | materials and analyze the changes in     | 3 | 2 | 2 | _ | _ | 2 | - | - | - | 1  | 1 | 2 |
| CO 3 | structure properties.                    |   |   |   |   |   |   |   |   |   |    |   |   |
|      | Use material specification catalogues of |   |   |   |   |   |   |   |   |   |    |   |   |
|      | material standards like BIS, British,    |   | 2 | 2 |   |   | 2 |   |   |   | 1  | 1 | _ |
| CO 4 | AISI.                                    | 2 | _ |   | - | - |   | - | - | - |    | _ |   |
|      |                                          |   |   |   |   |   |   |   |   |   |    |   |   |
|      | Analyze alloy steels, cast iron and      |   | 2 | 2 |   |   | 2 |   |   |   |    |   | 3 |
| CO 5 | non ferrous materials in view of         | 1 | 2 | 2 | - | - |   | - | - | - | -  | - | 3 |
|      | types, properties and applications       |   |   |   |   |   |   |   |   |   |    |   |   |

#### **Course Curriculum Design Committee**

| Sr | Name of the     | Designation and Institute                                         |
|----|-----------------|-------------------------------------------------------------------|
| No | faculty members |                                                                   |
| 1  | S.P Shiralkar   | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 2  | S.M Aher        | Lecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad  |
| 2  | NT CI 171 1 1   |                                                                   |

3 N.S.Khandagale Lecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEENTREPRENEURSHIP DEVELOPMENTCOURSE CODE6G306

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| All Programs                                      | Third                     |

#### 1. RATIONALE

In the post liberalization era significant growth in industrial sector has led to creation of huge opportunities in manufacturing and service sector. In such a scenario especially in Indian contest it has led to innumerable opportunities for first generation entrepreneurs on a large scale. Therefore it is expected that engineers need to be developed for manufacturing, service sector and entrepreneurship development. This course, which represents Allied level of courses, aims at imparting entrepreneurial skills amongst engineers of all disciplines.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Design a project proposal for an enterprise"

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme Total       |           |            |             | Exami | nation Schen | ne (Marks | )    |    |
|-----------------------------|-----------|------------|-------------|-------|--------------|-----------|------|----|
| (Hours/ Credits)<br>(L+T+P) |           | Theory     |             | Pract | ical         | Total     |      |    |
| L                           | Т         | Р          | С           | ESE   | РТ           | ESE @     | PA   |    |
|                             | -         | -          | C           |       |              | (PR/OR)   | (TW) | 50 |
| 2                           | -         | 2          | 4           |       |              |           | 50   | 50 |
| Du                          | ration of | the Examin | ation (Hrs) |       |              |           |      |    |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

# GPA

## 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -.

- 1 Apply business/enterprise principals and characteristics.
- 2 Design information and supporting system related to start a business.
- 3 Estimate and record financial requirements.
- 4 Develop detailed project report.
- 5 Use various software related to business.

# 5. DETAILED COURSE CONTENTS

| Unit                                         | <b>Major Learning Outcomes</b> (in cognitive domain)                                                                                                                                                                                                                                                                                           | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit –I<br>Basic Concepts<br>of Entrepreneur | <ul> <li>1a. Describe Entrepreneur.</li> <li>1b. Identify Risk<br/>Use Creative skills</li> <li>1c. Describe Risk Situation.</li> <li>1d. Generate Business<br/>Idea Methods and techniques<br/>to generate Business.</li> <li>1e. Plan for Transforming Ideas<br/>In to opportunities.</li> <li>1f. Carryout of<br/>SWOT Analysis.</li> </ul> | <ul> <li>Basic Concepts of Entrepreneur</li> <li>1.1. Concept, Classification &amp;<br/>Characteristics of Entrepreneur.<br/>Creativity and Risk taking,<br/>Concept of Creativity &amp; Qualities<br/>of Creative person. Risk<br/>Situation, Types of risk &amp; risk<br/>takers.</li> <li>1.2 Business Idea Methods and<br/>techniques to generate<br/>business idea.</li> <li>1.3 Transforming Ideas in to<br/>opportunities- transformation<br/>involves Assessment of idea &amp;<br/>Feasibility of opportunity,</li> <li>1.4 SWOT Analysis.</li> </ul> |

| 6G306 |
|-------|
|-------|

# GPA

# Entrepreneurship Development

| Unit– II<br>Information<br>And Support<br>Systems | <ul> <li>2a. Use Information data for<br/>business.</li> <li>2b. Information related to support<br/>system.</li> <li>2c. Lay down the Procedures and<br/>related to Information.</li> <li>2d. Identify Govt. Support<br/>Systems related to EDP.</li> <li>2e. Explore subsidies to<br/>entrepreneur.</li> </ul> | <ul> <li>2.1 Information Needed and Their<br/>Sources. Information related to<br/>project, Information related to<br/>support system, Information related<br/>to Procedures and formalities.</li> <li>2.2 Support Systems: <ul> <li>Small Scale Business<br/>Planning, Requirements.</li> <li>Govt. &amp; Institutional<br/>Agencies, Formalities</li> <li>Statutory Requirements and<br/>Agencies.<br/>Government Support and subsidies<br/>to entrepreneur.</li> </ul> </li> </ul> |
|---------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit– III<br>Market<br>Assessment                 | <ul> <li>3a Undertake Market survey.</li> <li>3b Use Marketing skills and<br/>Survey.</li> <li>3c Assess market for business<br/>opportunities.</li> </ul>                                                                                                                                                      | Market Assessment<br>3.1 Marketing -Concept and Importance<br>3.2 Market Identification, Survey Key<br>components. (Market Segmentation)<br>3.3 Market Assessment.                                                                                                                                                                                                                                                                                                                   |
| Unit– IV<br>Business<br>Finance &<br>Accounts     | <ul> <li>4a. Determine product cost.</li> <li>4b. Analyze for breakeven of business proposal.</li> <li>4c. Maintain Business finance and accounts.</li> </ul>                                                                                                                                                   | Business Finance & Accounts         4.1 Business Finance         • Cost of Project         • Sources of Finance         • Assessment of working capital         • Product costing         • Profitability         • Break Even Analysis         • Financial Ratios and Significance         4.2 Business Account         Accounting Principles, Methodology         • Book Keeping                                                                                                   |

# Entrepreneurship Development

|                                                               |                                                                                                                                                                                                                                           | <ul> <li>Financial Statements</li> <li>Concept of Audit,</li> <li>Trial Balance</li> <li>Balance Sheet</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                         |
|---------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit - V<br>Business Plan &<br>Project Report                 | <ul> <li>5a. Prepare Business proposal.</li> <li>5b. Undertake project appraisal.</li> <li>5c. Undertake cost benefit<br/>analysis. Cost benefits<br/>analysis.</li> </ul>                                                                | Business Plan & Project Report<br>5.1 Business plan steps involved from<br>concept to commissioning Activity<br>Recourses, Time, Cost<br>5.2 Project Report<br>1) Meaning and Importance<br>2)Components of project<br>report/profile(Give list)<br>5.3 Project Appraisal<br>1) Meaning and definition<br>2) Technical, Economic feasibility<br>3) Cost benefit Analysis.                                                                                                                                 |
| Unit – VI<br>Enterprise<br>Management<br>And Modern<br>Trends | <ul> <li>6a. Manage resources.</li> <li>6b. Prepare plan for productivity.</li> <li>6c. Assure Quality.</li> <li>6d. Explore Govt facilities (Industrial zones and SEZ.)</li> <li>6e. Explore E-Commerce avenues for business.</li> </ul> | <ul> <li>Enterprise Management And Modern<br/>Trends</li> <li>6.1 Enterprise Management: - <ol> <li>Essential roles of Entrepreneur in<br/>managing enterprise</li> <li>Product Cycle: Concept And<br/>Importance</li> <li>Probable Causes Of Sickness</li> <li>Quality Assurance, Importance of<br/>Quality, Importance of testing</li> <li>Industrial zones and SEZ.</li> </ol> </li> <li>6.2 E-Commerce, Concept and process.</li> <li>6.3 Global Entrepreneur: role and<br/>opportunities.</li> </ul> |
| Unit – VII<br>Introduction of<br>Bussiness<br>Related         | <ul> <li>7a.Use business related<br/>software's.</li> <li>7b. Survey Software's<br/>used in Mall, industries.</li> <li>7c. Identify Software's</li> </ul>                                                                                 | Introduction Of Bussiness<br>Related Softwares<br>7.1 Software's used in Mall.                                                                                                                                                                                                                                                                                                                                                                                                                            |

| Softwares | used For accounting. | 7.2 Software's used in Medical shops.                      |
|-----------|----------------------|------------------------------------------------------------|
|           |                      | 7.3 Software's used in industrial stores such as SAP, ERP. |
|           |                      | 7.4 Software's used for accounting such as FICO, FINNACLE  |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit<br>No. | Unit Title                                  | Teaching<br>Hours | Dist  | ribution o | f Theory | Marks |
|-------------|---------------------------------------------|-------------------|-------|------------|----------|-------|
| 110.        |                                             | nouis             | R     | U          | Α        | Total |
|             |                                             |                   | Level | Level      | Level    | Marks |
| Ι           | Basic Concepts of Entrepreneur.             | 04                | NA    | NA         | NA       | NA    |
| II          | Information And Support Systems             | 05                | NA    | NA         | NA       | NA    |
| III         | Market Assessment                           | 05                | NA    | NA         | NA       | NA    |
| IV          | Business Finance & Accounts                 | 05                | NA    | NA         | NA       | NA    |
| V           | Business Plan & Project Report              | 05                | NA    | NA         | NA       | NA    |
| VI          | Enterprise Management And Modern<br>Trends  | 04                | NA    | NA         | NA       | NA    |
| VII         | Introduction of business related software's | 04                | NA    | NA         | NA       | NA    |
|             | Total                                       | 32                | NA    | NA         | NA       | NA    |

Legends: R – Remember, U – Understand, A – Apply and above (Bloom's revised Taxonomy)

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| S.<br>No. | Unit<br>No. | Practical Exercises (Outcomes in Psychomotor Domain)                                                                                | Approx.<br>Hrs. |
|-----------|-------------|-------------------------------------------------------------------------------------------------------------------------------------|-----------------|
|           |             |                                                                                                                                     | required        |
| 1         | Ι           | Literature survey of Financial Banks for Industries–<br>MSFC/IDBI/MSSIDC/CIDBI/MSME/DIC/ ROLE OF<br>DIFFERENT COMMERCIAL BANKS etc. | 04              |

6G306

| 2 | II  | Administration of readymade tools like questionnaires,<br>opinionative, Interview schedule for product identification<br>purpose (decision making process) | 04 |
|---|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | III | Development of "Business Ideas". Take any product and develop<br>the business idea for it.                                                                 | 04 |
| 4 | IV  | Visit to MCED/MITCON- going through the product related library.                                                                                           | 04 |
| 5 | VI  | Preparation of Preliminary / Detailed project report in the formats<br>recommended by MCED/MITCONPrepare project report and study its feasibility.         | 06 |
| 6 | VI  | At least one case study of successful entrepreneur.                                                                                                        | 04 |
| 7 |     | Assess yourself-are you an entrepreneur?                                                                                                                   | 06 |
|   |     | Total                                                                                                                                                      | 32 |

# 8. SUGGESTED STUDENTS ACTIVITIES

- 1. Prepare journals based on assignments.
- 2. Carry out Literature survey of Financial Banks for Industries.
- 3. Analyze the specifications, costs, quality and availability for various types of engineering components and find the business opportunity for it.
- 4. Interact with supplier/trader and discuss about business opportunities available in market.
- 5. Designing software for requirements to start business or similar type of issues. .
- 6. preparing project report for any product to be manufactured.
- 7. Search online PPT's, PDF's, video's on the design and software's for business.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- 1. Group discussion among students.
- 2. Arrange visits to industries and show various industrial jobs.
- 3. Motivate students to use internet and collect name, addresses, catalogues, rates, specifications of institutes and industries working in the area of business promotions.
- 4. Arrange expert lecture on various opportunities in business.

#### **10. SUGGESTED LEARNING RESOURCE**

| Sr.No. | Title of Book                                                    | Author                        | Publication                |
|--------|------------------------------------------------------------------|-------------------------------|----------------------------|
| 1      | Entrepreneurship                                                 |                               | NITTTR, Bhopal             |
|        | Development                                                      |                               |                            |
| 2      | The Seven Business Crisis&<br>How to Beat them                   | V.G.Patel                     | S.Chand and Co. New Delhi  |
| 3      | A handbook of New<br>Entrepreneurs                               | P.C.Jain                      | ,Dhanpat Rai and Sons      |
| 4      | Entrepreneurship development                                     | E.Gorden, K.<br>Natrajan      | Charotar Publication House |
| 5      | New Initiatives in<br>Entrepreneurship<br>Education And training | Gautam Jain,<br>Debmuni Gupta | Tata Mc- Graw Hill         |
| 6      | Entrepreneurship Theory and<br>Practice                          | J.S.Saini,B.S.Rathore         | Tata Mc- Graw Hill         |
| 7      | Enterpreneurship Development<br>and management                   | A.K.Singh                     | Laxmi Publications         |
| 8      | The Beer mat Entrepreneur                                        | South on D F                  | Pearson Education limited  |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

### Computers for Practical's with internet facility

- 1. Software's used in Mall.
- 2. Software's used in Medical shops.
- 3. Software's used in industrial stores such as SAP, ERP.
- 4. Software's used for accounting such as FICO, FINNACLE.

#### **12. LEARNING WEBSITE & SOFTWARE**

- i. http://www.product-list.php
- ii. http://www.SAP.com/products/faro-software
- iii. <u>http://www.ERP.com</u>
- iv. http://www.fico.com
- v. <u>http://finnacle.com</u>
- vi. Visit www.ediindia.org.
- vii. <u>http://www.project reports.com</u>

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO.  | Course Outcome                                                        | P      | P      | P      | P      | P      | P      | P      | P      | P      | P           | P                  | P<br>c      |
|------|-----------------------------------------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|-------------|--------------------|-------------|
| NO.  |                                                                       | 0<br>1 | O<br>2 | O<br>3 | 0<br>4 | O<br>5 | O<br>6 | O<br>7 | O<br>8 | 0<br>9 | O<br>1<br>0 | <b>S</b><br>O<br>1 | S<br>O<br>2 |
| CO 1 | Apply business/enterprise principals and characteristics.             | 3      | 3      | -      | -      | -      | -      | 2      | -      | 3      | -           | -                  | 2           |
| CO 2 | Design information and supporting system related to start a business. | 3      | 3      | -      | -      | -      | -      | 3      | -      | 3      | -           | -                  | -           |
| CO 3 | Estimate and record financial requirements.                           | 3      | 3      | -      | -      | -      | -      | 3      | -      | 3      | -           | -                  | 2           |
| CO 4 | Develop detailed project report.                                      | 3      | 3      | _      | -      | -      | -      | -      | -      | 3      | -           | 2                  | -           |
| CO 5 | Use various software related to business.                             | 3      | 3      | -      | -      | -      | -      | -      | -      | 3      | -           | 3                  | -           |

#### **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                            |
|----------|-----------------------------|----------------------------------------------------------------------|
| 1        | Prof. A. W. Nemade          | Lecturer in Mechanical Engineering, Govt.<br>Polytechnic, Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

#### COURSE TITLE DEVELOPMENT OF LIFE SKILLS

#### COURSE CODE 6G303

| Diploma Programme in which this course is offered | Semester in which course is |
|---------------------------------------------------|-----------------------------|
|                                                   | offered                     |
| CE/ME/ETX/EE/AE/DDGM/CO/IT                        | Third                       |
|                                                   |                             |

GPA

#### **1. RATIONALE :**

The generic skills are lifelong skills which need to be developed continuously. These skills are necessary for diploma engineers for their professional career.

This course aims to develop interpersonal skills, problem solving, decision making, Professionalism with etiquettes, ethics and value system.

This course also aims at developing an engineer as a team leader, effective member of the team and to become sound personality. It will develop the abilities and skills to perform at highest degree of quality as an individual.

#### 2. COMPETENCY :

"Develop life skills to enhance personal effectiveness, professionalism and optimal use of resources."

| Tea        | ching S | cheme | <b>Total Credits</b> | <b>Examination Scheme</b> |    |               |             |             |  |
|------------|---------|-------|----------------------|---------------------------|----|---------------|-------------|-------------|--|
| (In Hours) |         |       | (L+T+P)              | Theory Marks              |    | Pract         | tical Marks | Total Marks |  |
| L          | Т       | Р     | С                    | ESE                       | PT | ESE           | PA          |             |  |
|            |         |       |                      |                           |    | ( <b>OR</b> ) |             |             |  |
|            |         | 2     | 2                    |                           |    | 25@           | 25          | 50          |  |
|            |         |       |                      |                           |    |               |             |             |  |

#### **3. TEACHING AND EXAMINATION SCHEME :**

**Legends** : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, PR-Practical Examination, OR – Oral Examination, TW - Term Work, # External, @ Internal examination, ~ Online Examination.

#### 4. COURSE OUTCOMES (COs) :

- 1. Develop interpersonal skills.
- 2. Exhibit corporate etiquettes and professionalism.
- 3. Enhance personal effectiveness and body language
- 4. Practice time management and goal setting technique
- 5. Develop presentation skills.
- 6. Manage Stress at workplaces

# GPA

# **5 COURSE DETAILS :**

| Unit                                                        | Major Learning Outcomes<br>(in cognitive domain)                                                                                                                                                                                                                                                     | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – I Self Analysis                                      | 1a. Identify Strengths and<br>weaknesses of an individual<br>1b.Identify opportunities,<br>threats in different situations.<br>1c. Describe principle<br>of Need Base Theory                                                                                                                         | <ul> <li>Self-Analysis</li> <li>1.1 Strength, weaknesses,<br/>opportunities and threats</li> <li>1.2 Techniques of self-control</li> <li>1.3 Understanding Need<br/>base Theory — Attitude,<br/>aptitude, assertiveness, self-<br/>esteem, Confidence</li> <li>1.4 Understanding Self</li> </ul>                                                                                                                                                     |
| Unit– II<br>Communication<br>Skills& Presentation<br>Skills | <ul><li>2a. Identify techniques of communications.</li><li>2b. Describe Body language techniques</li></ul>                                                                                                                                                                                           | Communication Skills&<br>Presentation Skills<br>2.1 Techniques of<br>communication skills,                                                                                                                                                                                                                                                                                                                                                           |
|                                                             | <ul> <li>2c. Understand the principle<br/>Eye contact and facial<br/>expression.</li> <li>2d. Develop appropriate<br/>presentation Skills.</li> <li>2e. Use multimedia tools and<br/>technology for effective<br/>presentation.</li> <li>2f. Conduct Group discussion<br/>and Interviews.</li> </ul> | <ul> <li>2.2 Body language, Dress<br/>like the audience,<br/>Posture, Gestures, Eye<br/>contact and facial<br/>expression.</li> <li>2.3 Presentation Skill –Stage<br/>fright, Voice and language<br/>– Volume, Pitch,<br/>Inflection, Speed, Pause<br/>Pronunciation,<br/>Articulation, Language,<br/>Practice of speech.</li> <li>2.4 Group discussion and<br/>Interview technique, Use<br/>of aids –OHP, LCD<br/>projector, white board</li> </ul> |
| Unit III<br>Interpersonal<br>communication and              | 3a. exhibit/apply inter personal skills in different situations.                                                                                                                                                                                                                                     | Interpersonal communication<br>and Corporate and Etiquettes                                                                                                                                                                                                                                                                                                                                                                                          |
| Corporate and<br>Etiquettes                                 | 3b. Practice manners and Etiquettes.                                                                                                                                                                                                                                                                 | 3.1 Interpersonal<br>communication. Through<br>Self Development and<br>change.                                                                                                                                                                                                                                                                                                                                                                       |
|                                                             |                                                                                                                                                                                                                                                                                                      | <ul><li>3.2 Polished personal habits</li><li>3.3 Ethics &amp; Etiquettes: a way of life, what are ethics, how ethics help</li></ul>                                                                                                                                                                                                                                                                                                                  |

|                                   |                                                                                           | to ensure positive                                                                                                                                                                                                                                                                                            |
|-----------------------------------|-------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                                                                           | <ul><li>interpersonal relations,</li><li>3.4 Personal value system,</li><li>Personal Attire &amp; Grooming</li></ul>                                                                                                                                                                                          |
|                                   |                                                                                           | 3.5 Cell phone manners                                                                                                                                                                                                                                                                                        |
| Unit IV                           | 4a. Understand importance of time management.                                             | Time management and Goal<br>Setting                                                                                                                                                                                                                                                                           |
| Time Management and goal setting. | 4b. Apply time management skills.                                                         | 4.1 Time management skills in groups for completion of project                                                                                                                                                                                                                                                |
|                                   | 4c. Set the goals for career growth.                                                      | 4.2 Factors that lead to time loss and how they can be avoided                                                                                                                                                                                                                                                |
|                                   |                                                                                           | <ul> <li>4.3 Time matrix &amp; urgent<br/>versus, Important jobs</li> <li>4.4 Importance of goal<br/>setting</li> </ul>                                                                                                                                                                                       |
| Unit V                            |                                                                                           | 4.5 How to set SMART goals.Health and Stress Management                                                                                                                                                                                                                                                       |
| Health and Stress                 | 5a. Manage health for personal efficiency.                                                | <ul><li>5.1 Importance of health management,</li></ul>                                                                                                                                                                                                                                                        |
| Management                        | 5b. Describe Stress<br>Management,                                                        | 5.2 Relevance of it,                                                                                                                                                                                                                                                                                          |
|                                   | <ul> <li>5c. Use strategies to overcome stress</li> <li>5d Understand emotions</li> </ul> | <ul> <li>5.3 Tips to maintain good<br/>health</li> <li>5.4 Strategies to overcome<br/>stress, understanding<br/>importance of good<br/>health to avoid stress.</li> <li>5.5 Stresses in groups,<br/>understand and identify<br/>emotions, how to control<br/>emotions, emotional<br/>intelligence.</li> </ul> |
| Unit VI                           | ба. participate in technical                                                              | Problem Solving Techniques and<br>Creativity                                                                                                                                                                                                                                                                  |
| Problem Solving                   | Quizzes and puzzles.                                                                      | 6.1 definition of problem,                                                                                                                                                                                                                                                                                    |
| Techniques and<br>Creativity      | 6b.Use problem<br>solving techniques                                                      | <ul><li>types</li><li>6.2 solving Puzzles and<br/>technical quizzes.</li><li>6.3 Reducing conflict by<br/>preventing problems in</li></ul>                                                                                                                                                                    |
|                                   | 6c. Describe factors                                                                      | the classroom.                                                                                                                                                                                                                                                                                                |

| enhancing creativity |                              |
|----------------------|------------------------------|
|                      | 6.4 Creativity concept, Tips |
|                      | and ways to increase         |
|                      | creativity, importance of    |
|                      | creativity.                  |

# 6. SUGGESTED SPECIFICATION TABLE WITH HOURS AND MARKS (THEORY) :

| Unit<br>No. | Unit Title                                                  | Teaching<br>Hours | Distribution of Theory Marks |       |       |       |  |  |
|-------------|-------------------------------------------------------------|-------------------|------------------------------|-------|-------|-------|--|--|
| 110.        |                                                             | Hours             | R                            | U     | Α     | Total |  |  |
|             |                                                             |                   | Level                        | Level | Level | Marks |  |  |
| Ι           | Self-Analysis                                               | 4                 | NA                           | NA    | NA    | NA    |  |  |
| II          | Communication Skills &<br>Presentation Skills               | 6                 | NA                           | NA    | NA    | NA    |  |  |
| III         | Interpersonal communication<br>and Corporate and Etiquettes | 6                 | NA                           | NA    | NA    | NA    |  |  |
| IV          | Time management and Goal Setting                            | 6                 | NA                           | NA    | NA    | NA    |  |  |
| V           | Health and Stress<br>Management                             | 6                 | NA                           | NA    | NA    | NA    |  |  |
| VI          | Problem Solving Techniques<br>and Creativity                | 4                 | NA                           | NA    | NA    | NA    |  |  |
|             | Total                                                       | 32                | -                            | -     | -     | -     |  |  |

**Legends:** R = Remembrance; U= Understanding; A= Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

### 7. SUGGESTED EXERCISES/PRACTICALS :

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive, psychomotor and affective domain**) so that students are able to acquire the competencies.

Note: Here only outcomes in psychomotor domain are listed as practical/exercises. However, if these practical/exercises are completed appropriately, they would also lead to development of **Programme Outcomes/Course Outcomes in affective domain** as given in a common list at the beginning of curriculum document for this programme. Faculty should refer to that common list and should ensure that students also acquire those Programme Outcomes/Course Outcomes related to affective domain.

| S.<br>No. | Unit<br>No. | <b>Practical Exercises</b><br>(Outcomes in Psychomotor Domain)                                                                                                                                                                                                                                                                                                                                                 |    |  |  |  |  |  |
|-----------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|--|
| 1         | Ι           | 1) Analyze self with SWOT techniques.                                                                                                                                                                                                                                                                                                                                                                          | 04 |  |  |  |  |  |
| 2         | Π           | 2) Present a topic (related to technical advancement should be given to a group of five to six students. Group should search the necessary information from various sources and prepare a systematic power point presentation. All such presentations should be delivered in front of class by groups. Presentations are to be evaluated by teacher).                                                          | 04 |  |  |  |  |  |
| 3         | II          | <ol> <li>Deliver extempore (Topic will be given to the individual for a<br/>speech of 5 to 8 minutes. Here the individual speeches of<br/>students will be conducted and evaluated by group of students.)</li> </ol>                                                                                                                                                                                           | 04 |  |  |  |  |  |
| 4         | II          | <ol> <li>Participate in Group Discussion (Teacher should form group of<br/>six to eight students and give topics for group discussion. Group<br/>discussions should be carried out and evaluated by teacher)</li> </ol>                                                                                                                                                                                        | 04 |  |  |  |  |  |
| 5         | III         | 5) Exhibit Etiquettes in different situations (Visit to any one place<br>like office/firm/development sites etc. and observe the<br>communication and etiquettes.)                                                                                                                                                                                                                                             | 04 |  |  |  |  |  |
| 6         | IV          | <ul> <li>6) Prepare your individual time table for a week - <ul> <li>a) List down your daily activities.</li> <li>b) Decide priorities to be given according to the urgency and importance of the activities.</li> <li>c) Find out your time wasters and mention the corrective measures.</li> <li>d) Set short term and long term goal for PT/TEE/Gymkhana -sport/gathering event etc.</li> </ul> </li> </ul> | 04 |  |  |  |  |  |

| S.<br>No. | Unit<br>No. |                                                                                                                                                              |    |  |  |  |  |
|-----------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|--|--|--|
| 110.      |             | (Outcomes in r sychomotor Domain)                                                                                                                            |    |  |  |  |  |
| 7         | V           | <ol> <li>Demonstrate simple Yoga postures and other stress relieving<br/>techniques by professional persons and narrate his/ her<br/>experiences.</li> </ol> | 04 |  |  |  |  |
| 8         | VI          | 8) Participate in Quizzes, puzzle- solving and educational games and narrate his/her experiences.                                                            | 04 |  |  |  |  |
|           |             | Total                                                                                                                                                        | 32 |  |  |  |  |

GPA

# 8. SUGGESTED STUDENT ACTIVITIES :

Following is the list of proposed student activities like:

- Following activities will be undertaken as per their convenience. students are advice to submit their report about participation in activities.
- 1. Case studies to be discussed in a group and presentation of the same by group /group leader.
- Carry out Field exercises and prepare reports. (e.g. interact with supplier/trader and discuss about techno commercial specifications of product)
- Role play by individual/group leader.
- Sharing of self -experiences in a group.
- Brain storming sessions in a group
- Questionnaire -filling & discussing results of the same in a group.

#### **9. SPECIAL INSTRUCTIONAL STRATEGIES (if any) :**

- i. Motivate students to use internet and collect information about various generic skills
- **ii.** Arrange expert lecture on various topics on (two/three) SWOT analysis/Time management/Etiquettes / stress management/health management.etc.

# **10. SUGGESTED LEARNING RESOURCES :**

## A) Books

| Sr.<br>No. | Title of Book                         | Author                         | Publication                  |  |
|------------|---------------------------------------|--------------------------------|------------------------------|--|
| 1          | Pearson Education Asia                | Organizational Behavior        | Tata McGraw Hill             |  |
| 2          | Marshall Cooks                        | Adams Time management          | Viva Books                   |  |
| 3          | Bishop, Sue                           | Develop Your<br>Assertiveness  | Kogan Page India             |  |
| 4          | Allen Pease                           | Body Language                  | Sudha Publications Pvt. Ltd. |  |
| 5          | Lowe and Phil                         | Creativity and problem solving | Kogan Page (I) P Ltd         |  |
| 6          | You can win                           | Mr. Shiv Khera                 | Macmillan ,India Ltd.        |  |
| 7          | Wings of Fire                         | Mr .Abdul Kalam                | Universities Press           |  |
| 8          | Prabhavi Vyaktimatwa                  | SEEMA GUPTA                    | SAKET PUBLICATION            |  |
| 9          | Yoga Dipika                           | Mr. Iyyengar                   | Rohan prakashan              |  |
| 10         | Tan Tanavache Niyojan<br>(Marathi)    | Dr. Anand Nadkarni             | Majestic Publishing House    |  |
| 11         | Tandrust Raha ,Mast<br>Jaga.(Marathi) | Dr. Rajiv Sharangpani          | Continental Prakashan        |  |

B) Software/Learning Websites: Websites related to soft skills.

# 11. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO. | Course Outcome                                      | РО | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | PSO2 |
|-----|-----------------------------------------------------|----|---|---|---|---|---|---|---|---|---|---|------|
| NO. |                                                     | 1  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | S |      |
|     |                                                     |    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 0 |      |
|     |                                                     |    |   |   |   |   |   |   |   |   | 0 | 1 |      |
| CO1 | Develop interpersonal skills                        | -  | - | - | 2 | - | - | - | 2 | 3 | - | - | -    |
| CO2 | Exhibit corporate etiquettes and professionalism    | -  | 2 | - | - | 2 | - | - | 2 |   | - | - | -    |
| CO3 | Enhance personal effectiveness<br>and body language | -  | - | 2 | - | - | - | - | - | - | 2 | - | -    |
| CO4 | Practice time management and goal setting technique | 2  | - | 2 | I | - | I | - | 2 | 2 | - | - | -    |
| CO5 | Develop presentation skills                         | -  | 2 | - | - | - | - | 2 | - | - |   | - | -    |
| CO6 | Manage stress at workplace                          | -  | 2 | - | - | 2 | - | - | - | - | 2 | - | -    |

#### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 Dr.Uday V. Pise Head of Department, Mechanical Engg. Govt. Polytechnic, Aurangabad
- 2 Prof. R. T. Aghao Lecturer in Applied Mechanics., Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# NON EXAM:6G311 TO 6G328

### **Course Structure:**

| Teaching | s Scheme | Evaluation Scheme |    |     |    |    |    |       |  |
|----------|----------|-------------------|----|-----|----|----|----|-------|--|
| TH       | 0        |                   | PT | TEE | TW | PR | OR | Total |  |
| PR       | 02       | Max.Marks         |    |     |    |    |    |       |  |
| TOTAL    | 02       | Duration          |    |     |    |    |    |       |  |

# (LIST OF NON EXAM COURSES)

| 6G311 | Personality Development          |
|-------|----------------------------------|
| 6G312 | Entrepreneurship Development(CE) |
| 6G313 | Hobby Electronics                |
| 6G314 | Spoken English                   |
| 6G315 | German                           |
| 6G316 | French                           |
| 6G317 | Yoga                             |
| 6G318 | Music instrumental               |
| 6G319 | Two wheeler maintenance          |
| 6G320 | Entrepreneurship Development(EE) |
| 6G321 | Electrical maintenance           |
| 6G322 | Electronic maintenance           |
| 6G323 | Computer Hardware Maintenance    |
| 6G324 | Japanese                         |
| 6G325 | Music vocal                      |
| 6G326 | aerobics                         |
| 6G327 | Indian classical Dance           |
| 6G328 | Sewing machine maintenance       |

# COURSE TITLESTRENGTH OF MATERIALSCOURSE CODE6R202

## **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Common to branches(ME and AE)                     | Third                     |

1. RATIONALE: Analysis and design of different machine components needs the basic understanding and application of mechanical properties of material and their behavior under different loading and stress conditions. Mechanical Engineer should be able to analyze behavior of materials and machine components under various types of loads. This course enables to understand different types of loads and corresponding effects on materials and machine components under various loading conditions so that appropriate material of suitable strength can be selected for the machine parts. The experiments to be conducted in laboratory will integrate knowledge and desired skills as regards to the behavior of components and materials.

### **2. COMPETENCY:**

At the end of studying this course students will be able to,

- 1. Analyze structural components/machine components using different methods.
- 2. Investigate various structural properties of materials by conducting tests under different loading conditions.

| Teaching Scheme     Total       Credits |   |   | Total<br>Credits | Examination Scheme (Marks) |    |         |       |     |  |  |
|-----------------------------------------|---|---|------------------|----------------------------|----|---------|-------|-----|--|--|
| (Hours/ Credits)                        |   |   | (L+T+P)          | Theory                     |    | Pract   | Total |     |  |  |
| т                                       | т | Р | С                | ESE                        | РТ | ESE@    | PA    |     |  |  |
| L                                       | 1 | Г | C                | ESE                        | ΓI | (PR/OR) | (TW)  | 150 |  |  |
| 3                                       | - | 2 | 5                | 80                         | 20 |         | 50    | 130 |  |  |
| Duration of the Examination (Hrs)       |   |   | 3                | 1                          |    |         |       |     |  |  |

#### 3. TEACHING AND EXAMNATION SCHEME :

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR-** Practical; C-Credits; **ESE-** End Semester Examination; **PT** – **Progressive Test, PA-** Progressive Assessment, OR –Oral Examination, TW - Term Work, # External, @ Internal, ~ Online Examination.

# 4. COURSE OUTCOMES :

At the end of studying this course students will be able to: -

- 1. Analyse structural behaviour of materials under various loading conditions.
- 2. Select material considering engineering properties for the given structural applications/machine components.
- 3. Draw shear force diagram and bending moment diagram for statically determinate beams.
- 4. Determine the bending and shear stresses in beams.
- 5. Determine direct and bending stresses due to eccentric loading.
- 6. Design shafts for given criteria.

# 5. DETAILED COURSE CONTENTS:

| Unit        | Major Learning Outcomes   | Topics And Sub-Topics                                                          |
|-------------|---------------------------|--------------------------------------------------------------------------------|
|             | (Cognitive Domain Only)   |                                                                                |
| Unit –I     | 1a. Evaluate material     | 1.1 Definition of rigid, elastic and plastic bodies.                           |
| Stress and  | properties under          | Definition of stress, strain, elasticity, Hook's                               |
| Strain      | longitudinal, lateral,    | law, elastic limit, modulus of elasticity. SI                                  |
| Suam        | shear loads.              | units.                                                                         |
|             | 1b. Analyze composite     | 1.2 Standard Stress-strain curve for mild steel                                |
|             | sections under direct     | and HYSD bar, Yield stress/ Proof stress,                                      |
|             | load.                     | Ultimate stress, breaking stress and                                           |
|             | 1c. Explain concept of    | percentage elongation, working stress.                                         |
|             | various types of shear    | 1.3 Deformation of bars of uniform and stepped                                 |
|             | with examples.            | cross sections under axial load/ forces                                        |
|             | 1d. Evaluate elastic      | applied at intermediate sections                                               |
|             | constants for given       | 1.4 Composite sections under axial load,                                       |
|             | criteria                  | modular ratio, equivalent area.                                                |
|             | 1e. Identify type of      | 1.5 Longitudinal and Lateral strain, Poisson's                                 |
|             | load(gradual/sudden/im    | ratio, biaxial and tri-axial stresses,                                         |
|             | pact and corresponding    | volumetric strain, change in volume, Bulk                                      |
|             | stress)                   | modulus.                                                                       |
|             | 1f. Calculate temperature | 1.6 Shear stress and strain, modulus of rigidity,                              |
|             | stress and strain for     | simple and complementary shear stresses.                                       |
|             | given sistuation          | Concept of single shear and double shear,                                      |
|             |                           | punching shear.                                                                |
|             |                           | 1.7 Relation between modulus of elasticity,                                    |
|             |                           | modulus of rigidity and bulk                                                   |
|             |                           | modulus(without derivation)                                                    |
|             |                           | 1.8 Concept of gradual, sudden and impact load                                 |
|             |                           | and corresponding stress development.( No derivation of stress formulae and no |
|             |                           | numerical)                                                                     |
|             |                           | 1.9 Temperature stress and strain for bodies of                                |
|             |                           | homogeneous material with uniform cross                                        |
|             |                           | sections, deformation fully prevented                                          |
| Unit– II    | 2.a Compute Moment of     | 2.1 Definition, moment of inertia (M.I.) of plane                              |
|             | Inertia, polar moment     | lamina, radius of gyration, section modulus,                                   |
| Moment of   | of inertia, section       | parallel and perpendicular axes theorems                                       |
| Inertia     | modulus of                | (without derivation), Formulae for M.I. of                                     |
|             | symmetrical and           | rectangle, circle, semi circle, quarter circle                                 |
|             | unsymmetrical             | and triangle section (without derivation).                                     |
|             | sections.                 | 2.2 M.I. of symmetrical and Unsymmetrical I-                                   |
|             |                           | section, channel section, T-section, angle                                     |
|             |                           | section & Hollow sections and built up                                         |
|             |                           | section consisting of I section, channel                                       |
|             |                           | sections, Angle sections with cover plates                                     |
|             |                           | about centroidal axes and/or about any other                                   |
|             |                           | reference axis.                                                                |
|             |                           | 2.3 Polar M.I. of solid circular sections.                                     |
| Unit– III   | 3.a Calculate shear force | 3.1 Statically determinate beams like Cantilever,                              |
|             | and bending moment        | Simply Supported & Over Hang Beam                                              |
| Shear force | at desired points in      | 3.2 Shear Force and Bending Moment, Relation                                   |

| and bending  | statically determinate                     | between load, shear force and bending                                                    |
|--------------|--------------------------------------------|------------------------------------------------------------------------------------------|
| moment       | beam.                                      | moment(without derivation)                                                               |
| diagram      | 3.b Draw Shear Force &                     | 3.3 Sagging & Hogging Bending Moment and                                                 |
| ulagram      | Bending Moment                             | theirimportance.                                                                         |
|              | Diagram for astatically                    | 3.4 Point of Contra-shear, point of contra-flexure                                       |
|              | determinate                                | & their importance.                                                                      |
|              | beam,,locating point                       | 3.5 S.F & B.M Diagram for Cantilever, Simply                                             |
|              | of contra shear and                        | Supported& over hang beam subjected point                                                |
|              | contra flexure.                            | loads, uniformly distributed loads. Position                                             |
|              |                                            | of Point of contra shear, point of contra                                                |
|              |                                            | flexure.                                                                                 |
| Unit– IV     | 4.a Apply Bending Theory.                  | 4.1Concept of pure bending, Bending of                                                   |
| Dendline and | 4.b Identify nature of                     | different types of beams (elastic curves) and                                            |
| Bending and  | bending stresses,                          | development of bending stresses and their                                                |
| Shear        | Determine bending                          | nature, neutral axis.                                                                    |
| Stresses in  | stresses and shear<br>stresses at various  | 4.2 Theory of simple bending, assumptions,,                                              |
| beams        | stresses at various locations in the beam. | flexural formula with meaning of all terms, section modulus, bending stress distribution |
|              | 4.c Plot bending stress and                | diagram, moment of resistance.                                                           |
|              | shear stress distribution                  | 4.3Shear stress equation (without derivation),                                           |
|              | diagram.                                   | Meaning of terms used in equation, Relation                                              |
|              | 4.d Design section of beam                 | between maximum and average shear                                                        |
|              | from flexural strength                     | stresses for solid rectangular and solid                                                 |
|              | and shear strength.                        | circular beam sections.                                                                  |
|              |                                            | 4.4 Shear stress distribution for solidSquare,                                           |
|              |                                            | Rectangular and circular sections. Simple                                                |
|              |                                            | numerical problems based on shear equation.                                              |
| Unit– V      | 5.a Describe concept of                    | 5.1 Concept of direct & eccentric load, effects of                                       |
| Direct and   | eccentric load and its effect.             | eccentric load.                                                                          |
| Bending      | 5.b Determine resultant                    | 5.2 Members subjected to eccentric load with eccentricity about one principle axis only, |
| U            | stresses due to eccentric                  | maximum and minimum stress, resultant                                                    |
| Stresses     | load.                                      | stress distribution diagram                                                              |
|              | 5.c Plot resultant stress                  | 5.3 Condition for no tension, middle third rule,                                         |
|              | distribution for                           | core of the section and limit of eccentricities                                          |
|              | eccentric load                             | for rectangular and circular sections                                                    |
| Unit– VI     | 6.a Describe concept of                    |                                                                                          |
| <b>T</b> :   | torsion.                                   | equation with meaning of all terms(without                                               |
| Torsion      | 6.b Determine stress,                      | derivation), stress distribution diagram                                                 |
|              | angle of twist due to a                    | across the solid and hollow shaft.                                                       |
|              | torque and section of                      | 6.2 Design of solid and hollow shaft.(No                                                 |
|              | shaft for given conditions.                | numerical on comparison of shafts)                                                       |
|              | 6.c Determine power                        | 6.3 Power transmitted by a shaft.                                                        |
|              | transmitted by the                         |                                                                                          |
|              | shaft.                                     |                                                                                          |
| L            |                                            |                                                                                          |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                        |                   | Distribution Of Theory Marks |            |            |       |  |  |
|------------|----------------------------------------|-------------------|------------------------------|------------|------------|-------|--|--|
| Unit<br>No | Title Of Unit                          | Teaching<br>Hours | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |  |
| Ι          | Simple Stress and strain               | 12                | 04                           | 04         | 08         | 16    |  |  |
| II         | Moment of Inertia                      | 06                | 02                           | 02         | 08         | 12    |  |  |
| III        | Shear force and bending moment diagram | 08                | 02                           | 04         | 10         | 16    |  |  |
| IV         | Bending and shear stresses in beam     | 06                | 02                           | 04         | 06         | 12    |  |  |
| V          | Direct and bending stresses            | 08                | 02                           | 02         | 08         | 12    |  |  |
| VI         | Torsion                                | 08                | 02                           | 02         | 08         | 12    |  |  |
|            | Total                                  | 48                | 14                           | 18         | 48         | 80    |  |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

# 7. LIST OF PRACTICAL / LABORATORY EXPERIMENTS/ TUTORIALS :

# (Any Ten practicals \*Marked practical are compulsory)

| Sr.No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                                                 | Hours |
|--------|------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1      | Ι    | Demonstrate the operation of universal testing machine and<br>compression testing machine by taking trial on sample test<br>pieces.                | 02*   |
| 2      | Ι    | Perform tension test on mild steel as per IS432-1:1982                                                                                             | 04*   |
| 3      | Ι    | Perform tension test on Tor steel as per IS1786:2008                                                                                               | 02    |
| 4      | Ι    | Conduct Izod and Charpy Impact test on three metals. e.g.<br>mild steel/ brass/aluminum/ copper /cast iron etc as per<br>IS1757(Charpy),1598(Izod) | 04*   |
| 5      | IV   | Conduct Flexural test on timber beam on rectangular section<br>in both orientation as per IS2408:1963                                              | 02    |
| 6      | Ι    | Conduct compression test on three metals (with b/d ratio=1)                                                                                        | 02    |
| 7      | Ι    | Perform Single Shear and double shear test on any two<br>metals eg. Mild steel/ brass/aluminum/copper / cast iron etc<br>as per IS 5242:1979       | 02    |
| 8      | Ι    | Perform Rockwell Hardness test on three metals as per<br>IS1586:2000                                                                               | 02*   |

|    | 32  |                                                                                                                                                                               |     |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| 12 | III | Drawing of Shear force and Bending Moment diagrams of<br>cantilever, simply supported and overhanging beams for<br>different types of loads two problems on each type of beam | 06* |
| 11 | VI  | Perform torsion test on mild steel                                                                                                                                            | 02* |
| 10 | Ι   | Carry out Compression test on timber section along the grain<br>and across the grain as per IS2408:1963                                                                       | 02  |
| 9  | Ι   | Perform Brinell Hardness test on three metals as per<br>IS1500:2005                                                                                                           | 02  |

## **8. SUGGESTED STUDENTS ACTIVITIES:**

Other than class room and laboratory activities following are the suggested co-curricular students activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences.

| SR.NO. | ACTIVITY                                                                                                                   |
|--------|----------------------------------------------------------------------------------------------------------------------------|
| 1      | Compare stability of different geometric shapes.                                                                           |
| 2      | Survey the market and prepare list of various type of structural steel sections commonly used.                             |
| 3      | Collect the data of beams from field situations and correlate it with SFD and BMD numerical                                |
| 4      | Collect the data of various machine components subjected to tension, compression, shear, bending and combination of these. |
| 5      | Collect at least three Course question papers (MSBTE or Institute) and their model answers.                                |
| 6      | Draw SFD and BMD using free software.                                                                                      |

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES:

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration.
- d. Activity based learning.

f. Use of video, animation films to explain concepts, facts and applications of mechanics.

| GPA |
|-----|
|-----|

| S.No. | Name of Book                    | Author                           | Publication                                                |
|-------|---------------------------------|----------------------------------|------------------------------------------------------------|
| 1     | Strength of Materials           | R. K. Rajput                     | S Chand & Co. Ltd.<br>ISBN 978-8121925945                  |
| 2     | Strength of Materials           | R. S. Khurmi.                    | S Chand & Co. Ltd.<br>ISBN 978-8121928229                  |
| 3     | Strength of Materials           | S. Ramamurtham.                  | DhanpatRai& sons<br>ISBN 9788187433545                     |
| 4     | Mechanics of Structure<br>Vol 1 | S. B. Junnarkarand<br>H. J. Shah | Charotar Publishing House Pvt.<br>Ltd. ISBN 978-9380358659 |
| 5     | Strength of Materials           | Ratan S. S.                      | Tata McGraw Hill Education,<br>ISBN-9385965514             |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALSREQUIRED:

| Sr.No. | Name of equipment                    | Brief specification                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|--------|--------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1      | Universal Testing<br>Machine         | Capacity - 100 tonnes. Type: Mechanical type digital,<br>electrically Operated. Accessories: (1) Tensile test<br>attachment for flat and round specimen up to32 mm.<br>(2) Compression test attachment (3) Shear test<br>attachment with sizes of bushes 5,6,8,10,12,16,20,24<br>mm, (4) Transverse test attachment with bending<br>Punch,(5)Service tools,(6) Operation and<br>maintenance manuals - 2 nos. (7)Hardness<br>attachment.                                |  |  |  |  |  |
| 2      | Extensometer                         | Least count - 0.001 mm. Max. Extension = 5 mm.<br>Single dial gauge for 30,40 mm. 60 mm, 80 mm, 100 mm, gauge length.                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 3      | Rockwell Hardness<br>Testing Machine | 10 kgf and major loads; are 60,100,150 kgf.;<br>Rockwell hardness scales such as HRA, HRB, HRC,<br>etc. is obtained by using different types of indentors (<br>Diamond / Ball ); Test height x Throat is - 215 x 132<br>mm; Extra test height and throat of 295 x 148 mm,<br>Machines strictly conforms to IS:1586- 2000                                                                                                                                               |  |  |  |  |  |
| 4      | Brinell Hardness Testing<br>Machine  | Test loads from 500 to 3000 kgf in steps of 250kgf;<br>The height X Throat is 380 X 200 mm; Indentation<br>measurement by Brinell Microscope of 25 X<br>Magnification; Special Test fixtures for odd jobs /<br>production testing can be supplied (Optional);<br>Computerized Brinell Impression measurement<br>system (Optional); Manual / Optical /Computerized<br>type Brinell Hardness testing machine are also<br>available; Accuracy conform to IS:2281-2005 and |  |  |  |  |  |

|   |                                | BS:240                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|---|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Increase Tracking Marking      | CHARPY Test Apparatus: Pendulum drop angle 140°; Pendulum effective Wt 20-25 kg; Striking velocity of pendulum 5-6 m/sec; Pendulum impact energy 300 j; Min scale graduation 2 J; Distance of axis of pendulum rotation from center of specimen to specimen hit by pendulum 815 mm.                                                                                                                                                                    |
|   | Impact Testing Machine         | IZOD Impact Test Apparatus: Pendulum drop angle:<br>90°-120; Pendulum effective Wt: 20-25 kg;<br>Striking velocity of pendulum: 3-4 m/sec; Pendulum<br>impact energy: 168 j; Min scale graduation: 2 J;<br>Distance of axis of pendulum rotation from center of<br>specimen to specimen hit by pendulum : 815 mm                                                                                                                                       |
| 6 | Compression Testing<br>Machine | Digital display manual control compression testing;<br>machine; Max. Capacity (KN): 2000 ; Measuring<br>range: 4%-100% of FS; Relative error of reading: $\leq \pm 1\%$ ; Max. distance between two platen (mm): 330;<br>Compression platen size (mm): 220×220; Max. piston<br>stroke (mm): 0-20; Max. piston speed (mm/min):<br>Approx. 30; Column clearance (mm): 300×200; Oil<br>pump motor power (KW): 1.5; Whole dimensions<br>(mm): 855*380*1435 |
| 7 | Torsion Testing Machine        | Fixed with auto torque selector to regulate torque<br>ranges Contains geared motor to apply torque to<br>specimen through gearbox. Attached with autographic<br>recorder for relation between torque and angle of<br>twistAccuracy + 1 % of the true torqueSuitable For:<br>Torsion and Twist test on diverse metal rods and<br>flatsTorque Measurement by pendulum dynamometer<br>system.                                                             |

# **12. LEARNING WEBSITE & SOFTWARE:**

- i. http://nptel.ac.in/courses/IIT-MADRAS/Strength\_of\_Materials/Pdfs/4\_1.pdf
- ii. nptel.iitm.ac.in/courses/.../IIT.../lecture%2023%20and%2024.htm
- iii. en.wikipedia.org/wiki/Shear\_and\_moment\_diagram
- iv. www.freestudy.co.uk/mech%20prin%20h2/stress.pdf
- v. www.engineerstudent.co.uk/stress\_and\_strain.html
- vi. https://www.iit.edu/arc/workshops/pdfs/Moment\_Inertia.pdf
- vii. https://www.youtube.com/watch?v=-JG9IEqRzQ4
- viii. https://www.youtube.com/watch?v=4VIhh6sGkrI
- ix. https://www.youtube.com/watch?v=EcPGKLUE04I
- x. <u>https://www.youtube.com/watch?v=-ndT35aqDfAQ</u>
- xi. https://www.youtube.com/watch?v=ZJn\_Mj2HeNM
- xii. <u>https://www.youtube.com/watch?v=KU1gHy8Adrc</u>

| Sr.<br>No | Course Outcome                                                                                        | POs |   |   |   |   |   |   |   | PSOs |    |    |    |
|-----------|-------------------------------------------------------------------------------------------------------|-----|---|---|---|---|---|---|---|------|----|----|----|
|           |                                                                                                       | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9    | 10 | 01 | 02 |
| 1         | Analyse structural<br>behaviour of materials<br>under various loading<br>conditions.                  | 2   | 2 | 3 | - | - | - | - | - | -    | -  | -  | -  |
| 2         | Select material<br>considering<br>engineering properties<br>for the given structural<br>applications. | 3   | 3 | - | - | - | - | - | - | -    | -  | -  | -  |
| 3         | Draw shear force<br>diagram and bending<br>moment diagram for<br>statically determinate<br>beams.     | 2   | 2 | _ | _ | - | _ | - | _ | _    | 3  | _  | -  |
| 4         | Determine the bending<br>and shear stresses in<br>beams.                                              | 3   | 3 | 2 | - | - | - | - | - | -    | -  | -  | -  |
| 5         | Determine direct and<br>bending stresses due to<br>eccentric loading.                                 | 3   | 3 | - | - | - | - | - | - | -    | -  | -  | -  |
| 6         | Design shafts for given criteria                                                                      | 1   | 3 | 2 | - | - | - | - | - | -    | -  | -  | -  |

# **13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs)WITH COURSE OUTCOMES (COs) :**

# **Course Curriculum Design Committee:**

| SrNo | Name of the       | Designation and Institute                                          |
|------|-------------------|--------------------------------------------------------------------|
|      | faculty members   |                                                                    |
| 1    | Rajesh T. Aghao   | Sr.Lecturer in Applied Mechanics, Govt. Polytechnic,<br>Aurangabad |
| 2    | Ganesh M. Kechkar | Sr.Lecturer in Applied Mechanics, Govt. Polytechnic,<br>Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

COURSE TITLE COURSE CODE

# COMPUTER INTEGRATED MACHINING

6M406

#### PROGRAMME & SEMESTER

| Diploma Programme in which this course is<br>offered | Semester in which offered |  |  |
|------------------------------------------------------|---------------------------|--|--|
| Mechanical                                           | Fourth                    |  |  |

#### 1. RATIONALE

The need of today's manufacturing industrial world is based on best quality & precision oriented shorter manufacturing cycle time. To satisfy industrial need, the use of CAD/CAM & automation is inevitable. This course emphasizes on various principles of CAD/CAM, robotics and automation. The prerequisites of this subject have been introduced in earlier subjects such as engineering graphics, engineering drawing & mechanical engineering drawing.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Apply principles of CAD/CAM and automation and work on CNC machines"

# 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme                   |                  | Total | Examination Scheme (Marks) |        |    |             |            |       |  |
|-----------------------------------|------------------|-------|----------------------------|--------|----|-------------|------------|-------|--|
|                                   | (Hours/ Credits) |       | Credits<br>(L+T+P)         | Theory |    | Practical   |            | Total |  |
| L                                 | Т                | Р     | С                          | ESE    | РТ | ESE<br>(OR) | PA<br>(TW) | 50    |  |
| 2                                 | -                | 2     | 4                          |        |    | 25#         | 25         | 50    |  |
| Duration of the Examination (Hrs) |                  |       |                            |        |    |             |            |       |  |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; PR- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination

# GPA

# 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Select computer hardware and software for CAD/CAM applications
- 2. Conceptualize drafting and modelling in CAD.
- 3. Prepare a CNC part programme.
- 4. Operate CNC machine for manufacturing a component.
- 5. Make a suitable robotic configuration for a given application.

# 5. DETAILED COURSE CONTENTS

| Unit            | Major Learning Outcomes            | Topics And Sub-Topics                   |
|-----------------|------------------------------------|-----------------------------------------|
|                 | (Cognitive Domain Only)            |                                         |
| Unit - I        | 1a. Use of computers in            | 1.1 Role of Computers in industrial     |
| Introduction to | industrial manufacturing           | manufacturing. Product Cycle            |
| CAD/CAM         | 1b. Identify the various           | CAD/CAM,                                |
|                 | elements of CAD/CAM                | 1.2 CAD/CAM hardware and basic          |
|                 | hardware and basic structure       | structure, CPU, Memory, I/O devices,    |
|                 | of CAD/CAM                         | Storage devices and system              |
|                 |                                    | configuration                           |
| Unit - II       | 2a. Identify the need for          | 2.1 Requirement of geometric modelling, |
| Geometric       | geometric modeling                 | Types of geometric models.              |
| Modeling        | 2b. Suggest different geometric    | 2.2 Constructive solid geometry,        |
|                 | models for a given                 | boundary representation, parametric     |
|                 | application.                       | modelling.                              |
|                 | 2c. Apply different geometric      | 2.3 Solid modelling- Primitives &       |
|                 | modeling methods for part          | Boolean operations, Free formed         |
|                 | modeling                           | surfaces (Classification of surface     |
|                 |                                    | only) (No numerical treatment)          |
| Unit - III      | 3a. Understand different types     | 3.1 Introduction - NC, CNC, DNC         |
| Introduction to | of controls.                       | 3.2 Advantages, disadvantages and       |
| CNC             | 3b. Suggest criteria for selection | Application of CNC.                     |
|                 | of parts suitable for CNC          | 3.3 Classification of CNC system,       |
|                 | machines.                          | depending on feedback control           |
|                 | 3c. Identify various control       | 3.4 Motion control system - point to    |
|                 | systems used in CNC                | point, straight line, Continuous path   |
|                 | operation.                         | (Contouring).                           |
|                 |                                    |                                         |

| 6M406            |     | GPA                      | Cor |
|------------------|-----|--------------------------|-----|
|                  |     |                          |     |
| Unit - IV        | 4a. | Identify the different N | IC  |
| Part programming |     | codes used in part       |     |
|                  |     | programming.             |     |
|                  | 4b. | Apply suitable part      |     |
|                  |     |                          |     |

# mputer Integrated Machining

| Unit - IV           | 4a. Identify the different NC   | 4.1 Fundamentals of part programming,     |
|---------------------|---------------------------------|-------------------------------------------|
| Part programming    | codes used in part              | 4.2 Types of part programming, Manual     |
|                     | programming.                    | part programming, computer aided          |
|                     | 4b. Apply suitable part         | part programming and automatically        |
|                     | programming method for a        | programmed tool (APT).                    |
|                     | given component.                | 4.3 NC-Words, Programming format,         |
|                     | 4c. Prepare a simple part       | simple part programming                   |
|                     | program for a given             | 4.4 Use of canned cycles, subroutines and |
|                     | component.                      | do loops.                                 |
|                     | 4d. Prepare advance part        |                                           |
|                     | program using do loop,          |                                           |
|                     | canned cycle and subroutine.    |                                           |
|                     |                                 |                                           |
| Unit - V            | 5a. Identify various physical   | 5.1 Introduction, physical configuration, |
| Industrial Robotics | configurations and basic        | basic robot motions,                      |
|                     | robotic motions.                | 5.2 Technical features such as - work     |
|                     | 5b. Identify various components | volume, precision and speed of            |
|                     | of a robot.                     | movement, weight carrying capacity,       |
|                     | 5c. Suggest the various         | drive system, End effectors, and robot    |
|                     | applications of robotics in     | sensors.                                  |
|                     | industries.                     | 5.3 Application – Material transfer,      |
|                     |                                 | machine loading, welding, spray           |
|                     |                                 | coating, processing operation,            |
|                     |                                 | assembly, inspection.                     |
| Unit – VI           | 6a. Identify the basic elements | 6.1 Basic elements of automated system,   |
| Automation          | of automated system.            | advanced automation functions,            |
|                     | 6b. Compare the various levels  | 6.2 Various levels of automation and      |
|                     | of automation                   | comparison                                |
|                     | 6c. Identify various components | 6.3 Flexible manufacturing system,        |
|                     | of FMS and suggest the          | Introduction, FMS equipment, FMS          |
|                     | applications of FMS.            | application.                              |
|                     |                                 |                                           |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                         |                   | Dist       | ribution O | f Theory N | Aarks |
|------------|-------------------------|-------------------|------------|------------|------------|-------|
| Unit<br>No | Title Of Unit           | Teaching<br>Hours | R<br>level | U<br>Level | A<br>Level | TOTAL |
| 1          | Introduction to CAD/CAM | 05                |            |            |            | NA    |
| 2          | Geometric Modeling      | 05                |            |            |            | NA    |
| 3          | Introduction to CNC     | 05                |            |            |            | NA    |
| 4          | Part programming        | 05                |            |            |            | NA    |
| 5          | Industrial Robotics     | 06                |            |            |            | NA    |
| 6          | Automation              | 06                |            |            |            | NA    |
|            | Total                   | 32                | -          | -          | -          | -     |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                              | Hours |
|------------|------|-------------------------------------------------------------------------------------------------|-------|
| 1          | Ι    | Compare the conventional and CAD/CAM based product cycle used in industry.                      | 02    |
| 2          | II   | Applications of various methods of geometric modeling.                                          | 02    |
| 3          | IV   | Prepare simple part programs for any two given components.                                      | 02    |
| 4          | IV   | Prepare a part program using canned cycles, subroutine and do loop for given turning component. | 04    |
| 5          | IV   | Prepare a part program using canned cycles, subroutine and do loop for given milling component. | 04    |
| 6          | IV   | Machining of one turning component and one milling<br>component on CNC machine.                 | 10    |
| 7          | IV   | IV Report writing on visit to industry having CNC machine.                                      |       |
| 8          | V    | Report writing on visit to industry having robotic application.                                 | 04    |
|            |      | TOTAL                                                                                           | 32    |

# 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- 1. Carry out market survey for various CAD/CAM software's used in industry.
- 2. Analyze the specifications, costs, quality and limitations for various types of software's.
- 3. Collect the information about the manufacturers of CNC machines and the various tooling's used.
- 4. Survey of production systems where SPM, NC and CNC machines are used in industries.
- 5. Collect information about the various manufacturers of robotic machines.
- 6. Make a list of tools and equipments used in automation industry.
- 7. Search online PPT's, PDF's, videos on the use of CNC and robotics used in automation industry.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Expert lectures and seminars
- e. Activity based learning
- f. Industrial visits

#### **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                                                             | Author                                | Publication                      |  |  |
|-------|--------------------------------------------------------------------------|---------------------------------------|----------------------------------|--|--|
| 1.    | CAD/CAM                                                                  | Mikell P. Groover<br>Emory W. Zimmers | Prentice-Hall India              |  |  |
| 2.    | Computer Integrated<br>manufacturing                                     | A.N. Venkateshwaran,<br>Alavudeen     | PHI publication                  |  |  |
| 3     | Automation, Production<br>Systems & Computer<br>Integrated Manufacturing | Mikell P. Groover,                    | Pearson Education,<br>Inc., 2001 |  |  |
| 4     | CNC machines                                                             | M. Adithan,<br>B.S. Pabla             | New Age Internaional,<br>2008    |  |  |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S. No. | Name of equipment                                             | Brief specification                       |  |  |  |  |  |  |
|--------|---------------------------------------------------------------|-------------------------------------------|--|--|--|--|--|--|
| 1.     | CAD/CAM software such as SolidWorks<br>or Pro-E .             | Standard specification                    |  |  |  |  |  |  |
| 2.     | Simulators for CNC part programming<br>and simulation purpose | Hass make or equivalent                   |  |  |  |  |  |  |
| 4      | CNC lathe                                                     | TL1 Hass make along with all accessories. |  |  |  |  |  |  |
| 5      | VMC                                                           | TM1 Hass make along with all accessories. |  |  |  |  |  |  |

### 12. LEARNING WEBSITE & SOFTWARE

- a http://web.iitd.ac.in/~hegde/cad/lecture/L01\_Introduction.pdf
- b http://

www.engr.uvic.ca/~mech410/old/2\_Lecture\_Notes/5\_Geometric\_Modeling.pdf

- c http://www.nptel.ac.in/courses/108105063/pdf/L-23(SM)%20(IA&C)%20((EE)NPTEL).pdf
- d http://www.iitk.ac.in/infocell/TA201N2012/cncforwebsite.pdf
- e http://www.cadem.com/downloads/CNC%20Milling%20programing%20guide.pdf
- f http://eia.udg.edu/~fgarciab/docs/VIBOT/UdG\_FR\_C1.pdf
- g http://aima.eecs.berkeley.edu/slides-pdf/chapter25.pdf
- h http://engineering.nyu.edu/mechatronics/smart/pdf/Intro2Robotics.pdf
- i http://www.rockwellautomation.com/global/about-us/company-overview.page

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| S. No | Course Outcome                                                          |   |   |   |   | PO | s |   |   |   |    | PSC | )s |
|-------|-------------------------------------------------------------------------|---|---|---|---|----|---|---|---|---|----|-----|----|
|       |                                                                         | 1 | 2 | 3 | 4 | 5  | 6 | 7 | 8 | 9 | 10 | 01  | 02 |
| 1     | Select computer<br>hardware and software<br>for CAD/CAM<br>applications | 2 | 3 | 2 | 2 | 1  | - | - | - | - | 2  | 2   | 2  |
| 2     | Conceptualize drafting<br>and modelling in CAD.                         | 2 | 3 | 2 | 2 | -  | - | - | 1 | - | 2  | 3   | 1  |
| 3     | Prepare a CNC part programme.                                           | 1 | 3 | 3 | 2 | -  | - | - | 1 | 2 | 2  | 2   | -  |
| 4     | Operate CNC machine<br>for manufacturing a<br>component.                | 2 | 3 | 2 | 3 | 1  | - | - | 2 | - | 2  | 3   | 2  |
| 5     | Make a suitable robotic<br>configuration for a given<br>application.    | 2 | 3 | 3 | 3 | 1  | - | - | 1 | - | 2  | 1   | 3  |

## **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 V. M. Bukka Lecturer in Automobile Engineering, Govt. Polytechnic, Aurangabad
- 2 A. H. Choudhari Lecturer in Automobile Engineering, Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLETHERMAL ENGINEERINGCOURSE CODE6M205

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |  |
|---------------------------------------------------|---------------------------|--|
| Mechanical                                        | Fourth                    |  |

#### 1. RATIONALE

Thermal Engineering forms one of the core engineering subjects for Mechanical Engineering students. The course will enable students to establish foundation required to design, operate and maintain different thermal equipment. Thermal power plants are still contributing major share in electricity production in India. Students will be able to calculate various parameters required to determine the performance of these devices and also solve the common problems associated with these devices.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Use the principles of thermodynamics and analyze thermal engineering devices for different applications."

#### 3. TEACHING AND EXAMNATION SCHEME

| Т  | eaching S | Scheme     | Total              |        | Examination Scheme (Marks) |        |            |        |  |        |  |        |  |        |  |        |  |       |      |       |
|----|-----------|------------|--------------------|--------|----------------------------|--------|------------|--------|--|--------|--|--------|--|--------|--|--------|--|-------|------|-------|
|    | Hours/ C  |            | Credits<br>(L+T+P) | Theory |                            | Theory |            | Theory |  | Theory |  | Theory |  | Theory |  | Theory |  | Pract | ical | Total |
| L  | Т         | Р          | С                  | ESE    | ESE PT                     |        | PA<br>(TW) |        |  |        |  |        |  |        |  |        |  |       |      |       |
| 3  |           | 2          | 5                  | 80 20  |                            | 25# 25 |            | 150    |  |        |  |        |  |        |  |        |  |       |      |       |
| Du | ration of | the Examin | ation (Hrs)        | 03     | 01                         |        |            |        |  |        |  |        |  |        |  |        |  |       |      |       |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal

#### 4. COURSE OUTCOMES

At the end of this course students will be able to: -

- 1. Apply laws of thermodynamics to devices based on thermodynamics.
- 2. Apply first law of thermodynamics for ideal gas in closed systems.
- 3. Solve problems by using steam table and charts.
- 4. Analyze broad based working of steam turbines.
- 5. Analyze broad based working of steam condensers.
- 6. Calculate rate of heat transfer by different modes of heat transfer.

#### 5. DETAILED COURSE CONTENTS

| Unit      | Major Learning Outcomes         | Topics and Sub-topics                             |
|-----------|---------------------------------|---------------------------------------------------|
|           | (in cognitive domain)           |                                                   |
| Unit – I  | 1a. Describe thermodynamic      | 1.1 Basic Concepts - Concept of pure substance,   |
| Fundament | properties.                     | types of systems , properties of systems,         |
| als of    | 1b. Identify different types of | Extensive and Intensive properties, flow and      |
| Thermodyn | energy in                       | non-flow processes, specific volume,              |
| amics     | thermodynamics.                 | temperature, density, pressure. processes and     |
|           | 1c. Interpret various laws of   | cycles.                                           |
|           | thermodynamics.                 | 1.2 Energy - Work, Heat Transfer and Energy       |
|           | 1d. Apply first law of          | Thermodynamic definition of work and heat,        |
|           | thermodynamics to given         | difference between heat and work. energy -        |
|           | situation.                      | Potential Energy, kinetic Energy, internal        |
|           | 1e. Apply second law of         | Energy, Flow Work, concepts of enthalpy and       |
|           | thermodynamics to given         | physical concept of entropy.                      |
|           | situation.                      | 1.3Laws of Thermodynamics - Zeroth law, first law |
|           |                                 | of thermodynamics, second law of                  |
|           |                                 | thermodynamics, Kelvin Planks, Clausius           |
|           |                                 | statements and their equivalence. Reversible and  |
|           |                                 | irreversible processes, factors making process    |
|           |                                 | irreversible, reversible Carnot cycle for heat    |
|           |                                 | engine and refrigerator.                          |
|           |                                 | 1.4 Application of Laws of Thermodynamics -       |
|           |                                 | Steady flow energy equation and its application   |
|           |                                 | to boilers, engine, nozzle, turbine, compressor   |
|           |                                 | and condenser. Application of second law of       |
|           |                                 | thermodynamics to heat engine, heat pump and      |
|           |                                 | refrigerator.                                     |

|                                                          |                                                                                                                                                                                                                                                                                                                                                                                | 2.1 Assessedue?a lass colorilate malar colori                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit– II<br>Ideal Gases<br>and Ideal<br>Gas<br>Processes | <ul> <li>2a. Identify terms involved in characteristic gas equation.</li> <li>2b. State different laws.</li> <li>2c. Calculate different energy changes during ideal gas processes.</li> </ul>                                                                                                                                                                                 | <ul> <li>2.1 Avogadro's law, calculate molar volume.<br/>Derivation of characteristic gas equation using<br/>Boyle's and Charles's law, characteristic gas<br/>constant and universal gas constant.</li> <li>2.2 Ideal gas processes – Isobaric, Isochoric,<br/>Isothermal, Isentropic, Polytrophic, Throttling<br/>and their representation on P-V and T-S<br/>diagrams. Determination of work, heat, internal<br/>energy, enthalpy change and entropy change.<br/>(only simple numerical based on above).</li> </ul>                                                                                                                                                                                                                                                                                  |
| Unit– III<br>Steam and<br>steam<br>boiler                | <ul> <li>3a. Identify process of generation of steam.</li> <li>3b. Calculatevarious properties of steam.</li> <li>3c. Represent different vapor processes on suitable coordinates.</li> <li>3d. Explain construction and working of basic boilers.</li> <li>3e. Demonstrate boiler mountings and accessories.</li> </ul>                                                       | <ul> <li>3.1 Steam fundamentals - Applications of steam, generation of steam at constant pressure with representation on various charts such as PV, T-S, H-S. Properties of steam and use of steam table, dryness fraction, degree of superheat, sensible and latent heat, boiler efficiency, Mollier chart.</li> <li>3.2 Vapor processes - Constant pressure, constant volume, constant enthalpy, constant entropy process (numerical using steam table to determine dryness fraction and enthalpy), Rankine cycle.</li> <li>3.3 Steam Boilers - Classification, Construction and working of - Cochran, Babcock and Wilcox, Lamont and Loeffler boiler, Boiler draught. Indian Boiler Regulation (IBR) (to be covered in practical periods).</li> <li>3.4 Boiler mountings and accessories.</li> </ul> |
| Unit-IV<br>Steam<br>Nozzles<br>and<br>turbines           | <ul> <li>4a. Explain concept of steam nozzle.</li> <li>4b. Describe construction and working of steam turbines.</li> <li>4c. Illustrate compounding in steam turbines.</li> <li>4d. Explain regenerative feed heating methods with neat sketch.</li> <li>4e. Explain methods of governing of steam turbines with neat sketches.</li> <li>4f. Enlist losses in steam</li> </ul> | <ul> <li>4.1 Steam nozzle - Continuity equation, types of nozzles, concept of Mach number, critical pressure, application of steam nozzles.</li> <li>4.2 Steam turbine - Classification of turbines, Construction and working of impulse and reaction turbine.</li> <li>4.3 Compounding of steam turbines and its types, Regenerative feed heating, bleeding of steam, governing and its types, losses in steam turbines (no velocity diagrams and numerical).</li> </ul>                                                                                                                                                                                                                                                                                                                               |

6M205

|                                    | turbines.                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit –V<br>Steam<br>Condenser<br>s | <ul> <li>5a. Explain construction and working of given condenser.</li> <li>5b. Identify sources and effects of air leakage in given steam condenser.</li> <li>5c. Explain construction and working of various types of cooling towers.</li> <li>5d. Compare various types of cooling towers.</li> </ul> | <ul> <li>5.1 Steam condensers - Dalton's law of partial pressure, function and classification of condensers, construction and working of surface condensers.</li> <li>5.2 Condenser performance - Sources of air leakage and its effect, concept of condenser efficiency, vacuum efficiency (Simple numerical).</li> <li>5.3 Cooling Towers - Construction and working of forced, natural and induced draught cooling tower.</li> </ul>                                                                                                                                                               |
| Unit-VI<br>Heat                    | 6a. Describe three modes of heat transfer.                                                                                                                                                                                                                                                              | 6.1 Modes of heat transfer - Conduction, convection and radiation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| transfer<br>and heat<br>exchangers | <ul> <li>6b. Calculate heat transfer by conduction through composite slabs and pipes.</li> <li>6c. Verify Stefan Boltzmann law of radiation.</li> <li>6d. Select suitable heat exchanger for given application.</li> </ul>                                                                              | <ul> <li>6.2Conduction - Fourier's law, thermal conductivity, thermal resistance, conduction through composite walls,cylinders(Simple numerical), list of conducting and insulating materials.</li> <li>6.3Convection - Newton's law of cooling, natural and forced convection.</li> <li>6.4Radiation - Thermal Radiation, absorptivity, transmissivity, reflectivity, emissivity, black and gray bodies, Stefan-Boltzmann law.</li> <li>6.5Heat Exchangers - Classification, construction and working of shell and tube, shell and coil, pipe in pipe type and plate type heat exchanger,</li> </ul> |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Title Of Unit                       | Teaching | Distribution Of Theory Marks |       | Aarks |       |
|------|-------------------------------------|----------|------------------------------|-------|-------|-------|
| No   |                                     | Hours    | R                            | U     | А     | TOTAL |
|      |                                     |          | level                        | Level | Level |       |
|      |                                     |          |                              |       |       |       |
| Ι    | Fundamentals of thermodynamics      | 08       | 04                           | 08    |       | 12    |
| II   | Ideal gases and ideal gas processes | 08       | 04                           | 04    | 08    | 16    |
| III  | Steam and Steam boilers             | 10       | 04                           | 08    | 04    | 16    |
| IV   | Steam Nozzles and turbines          | 08       | 04                           | 08    | 04    | 16    |
| V    | Steam condensers                    | 08       | 04                           | 04    | 02    | 10    |
| VI   | Heat transfer and heat exchangers   | 06       | 02                           | 04    | 04    | 10    |
|      | Total                               | 48       | 22                           | 36    | 22    | 80    |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

#### 7. SUGGESTED EXERCISES/PRACTICALS

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive, psychomotor and affective domain**) (**Any 10 practicals**)

| Sr.<br>No. | Unit No                                                                                                                                      | Practical Exercises<br>(Learning Outcomes to be achieved through practical)                                                                                                                                                           |    |  |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| 1.         | Ι                                                                                                                                            | Demo of thermodynamic processes like P = C, V= C, T=C, S=C using<br>lab model or audio visuals from website.                                                                                                                          |    |  |
| 2.         | Ι                                                                                                                                            | Identification and classifications of important thermal systems like<br>engine, compressor, refrigerator, etc. and measurement of variables<br>like inlet and outlet Pressures and temperatures. Analysis of W& Q for<br>each system. | 02 |  |
| 3.         | III                                                                                                                                          | Observe and Draw component layout of steam power plant through<br>animation of steam power plant from website.                                                                                                                        | 02 |  |
| 4.         | I         Determination of volume and pressure at the inlet of reciprocating air                                                             |                                                                                                                                                                                                                                       |    |  |
| 5.         | III                                                                                                                                          | Study of Babcock Wilcox's boiler (Water tube boiler) using lab model.                                                                                                                                                                 | 04 |  |
| 6.         | III                                                                                                                                          | Study of Cochran boiler (fire tube boiler) using lab model and itscomparison with water tube boiler.                                                                                                                                  |    |  |
| 7.         | III                                                                                                                                          | Study of boiler mountings and accessories using lab models and audio visuals.                                                                                                                                                         | 02 |  |
| 8.         | VI                                                                                                                                           | Determination of thermal conductivity of a metallic rod using lab<br>apparatus and search and analyze thermal conductivities of different<br>materials.                                                                               | 02 |  |
| 9.         | VI       Measurement of heat transfer in any one common heat exchanger in         the lab (like intercooler of compressor, car radiator, etc |                                                                                                                                                                                                                                       | 02 |  |
| 10.        | V                                                                                                                                            | Performance of steam condenser using actual steam generation model & condensation process                                                                                                                                             |    |  |
| 11.        | VI                                                                                                                                           | Visit/Demo and report preparation of solar water heater or domestic<br>solar electric system and prepare presentation on solar energy                                                                                                 | 02 |  |

|     |     | .Minimum 10 slides.                                                                                                                                                          |        |
|-----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 12. | IV  | Demo of steam turbines by using audio visuals from website.                                                                                                                  | 02     |
| 13. | V   | Demo of different condensers available in lab and study of its energy balance equation.                                                                                      | 02     |
| 14. | IV  | Visit to thermal power station and preparation of report.                                                                                                                    | 02     |
| 15. | IV  | Case study about steam power plants in Maharashtra & India w.r.t.<br>establishment, capacity, requirements, furnaces, boilers, etc. Group<br>PPT preparation & presentations | 02     |
| 16. | III | Determination of Dryness fraction of sample steam using any one type<br>Calorimeter                                                                                          | 02     |
|     |     | Minimum number of Experiments to be completed in                                                                                                                             | 32 Hrs |

# 8. SUGGESTED STUDENTS ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested studentrelated co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes in this course:

- 1 Internet survey of boilers using appropriate sources of information.
- 2 Prepare charts of PV & TS charts of different ideal gas processes.
- 3 Prepare charts of PH, HS, TS diagrams for different steam processes.
- 4 Draw manually enthalpy-entropy (Molliers) chart and represent different vapor processes on the same using different color combinations.
- 5 Sketch charts on compounding, regenerative feed heating processes.
- 6 Prepare a report on visit to Sugar Factory / Steam Power Plant / Dairy industry with specification of boiler and list of mountings and accessories along with their functions. List insulating and conducting materials used in various applications.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning
- f. Use Internet

### g. Evaluation

# **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                         | Author                                                          | Publication                                                             |
|-------|--------------------------------------|-----------------------------------------------------------------|-------------------------------------------------------------------------|
| 1     | Thermal Engineering                  | Rathore, Mahesh M.                                              | Tata McGraw-Hill<br>Education, New Delhi<br>2010,<br>ISBN:9780070681132 |
| 2     | Basic Thermodynamics                 | Nag, P. K.                                                      | TATA McGraw-Hill<br>Education, New Delhi                                |
| 3     | Thermal Engineering                  | Rajput, R. K.                                                   | Firewall Media, New<br>Delhi 2005, ISBN: 978-<br>8170088349             |
| 4     | A Textbook of Thermal<br>Engineering | Gupta, J. K.; Khurmi R.<br>S.                                   | S. Chand Limited, New<br>Delhi 1997, ISBN:<br>9788121925730             |
| 5     | A course in Thermal<br>Engineering   | Domkundwar, S;<br>Kothandaraman, C. P.<br>and Domkundwar, A. V. | DhanpatRai& company,<br>New Delhi, 2004,<br>ISBN:9788177000214          |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.<br>No. | Name of equipment                                                                                                        | Brief<br>specification                              |
|------------|--------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|
| 1          | Two stage reciprocating air compressor with intercooler test rig.<br>Maximum Pressure – 10 bar, with digital watt meter. | As per<br>Mechanical<br>Laboratory<br>specification |
| 2          | Models of water tube and fire tube boilers (cut section models).                                                         | As per specification                                |
| 3          | Various mountings and accessories of boilers for assembly and dismantling purpose.                                       | As per<br>specification                             |
| 4          | Relevant simulation software.                                                                                            | As per<br>specification                             |
| 5          | Cut section models of impulse turbine and reaction turbine.                                                              | As per<br>specification                             |
| 6          | Experimental setup with convergent divergent nozzle.                                                                     | As per                                              |

GPA

|    |                                                                                      | specification           |
|----|--------------------------------------------------------------------------------------|-------------------------|
| 7  | Model of surface steam condenser with assembly and dismantling purpose.              | As per<br>specification |
| 8  | Experimental setup of shell and tube steam condenser. (Minimum shell diameter 45cm). | As per<br>specification |
| 9  | Experimental set up for determination of thermal conductivity.                       | As per                  |
|    | A Voltmeter, an ammeter and a digital temperature indicator are                      | specification           |
|    | also provided. Specifications: Metal Rod: Mild Steel Rod,                            |                         |
|    | Diameter 25 mm, Length of rod 300 mm Insulation Jacket: Made                         |                         |
|    | in Mild Steel, Mild Steel Rod is insulated by Asbestos powder                        |                         |
|    | Electric Heater: Clamp Heater, Capacity 200 W, Supply 230 V                          |                         |
|    | AC Dimmer: Range 0-250 V AC, 2 A Digital Voltmeter: Range                            |                         |
|    | 0-500 V AC Digital Ammeter: Range 0-2 A AC Temperature                               |                         |
|    | Sensors: Type 'K' Thermocouples – 12                                                 |                         |
|    | NosTemperature Indicator: 12 Channel Indicator with Selector                         |                         |
|    | Switch, Range 0-199.9° Frame: Made of M.S. Square Tubes                              |                         |
|    | & Sheets, Welded & Powder coated Optional                                            |                         |
|    | Accessories: Rotameter for Water Flow Measurement & nbsp;                            |                         |
|    | Experimental Capabilities: Determination of thermal conductivity                     |                         |
|    | of Metal Rod Comparison of calculated value of thermal                               |                         |
|    | conductivity.                                                                        |                         |
| 10 | Power engineering laboratory equipment.                                              | As per                  |
|    |                                                                                      | specification           |
| 11 | Experimental set up to verify Stefan Boltzmann law.                                  | As per                  |
|    | copper hemisphere, fixed on a flat nonconducting plate. The outer                    | specification           |
|    | surface of hemisphere is enclosed in a metal water jacket                            |                         |
|    | used to heat to some suitable constant temperature. Five                             |                         |
|    | Thermocouples are attached to the inner surface of the                               |                         |
|    | hemisphere. A test disc which is mounted on bakelite plate fitted                    |                         |

|    | in a hole drilled in the center of base plate.Thermocouple is used<br>to measure the temperature of test disc.<br>Standard Specification to calculate the Stefan Boltzmann<br>constant. |                         |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|
| 12 | Experimental set up to determine convective heat transfer coefficient.                                                                                                                  | As per<br>specification |

#### **12. E-LEARNING RESOURCES**

- 1. http://www.sfu.ca/~mbahrami/ENSC%20388/Notes/Intro%20and%20Basic%20Concepts.pdf
- 2. http://web.mit.edu/16.unified/www/FALL/thermodynamics/notes/node12.html
- 3. <u>https://www.youtube.com/watch?v=9GMBpZZtjXM</u>
- 4. <u>https://www.youtube.com/watch?v=3dyxjBwqF-8</u>
- 5. <u>https://www.youtube.com/watch?v=02p5AKP6W0Q</u>
- 6. http://www.learnengineering.org/2013/02/working-of-steam-turbine.html
- 7. <u>https://www.youtube.com/watch?v=MulWTBx3szc</u>
- 8. http://nptel.ac.in/courses/103106101/Module%20-%208/Lecture%20-%202.pdf
- 9. https://www.youtube.com/watch?v=Jv5p7o-7Pms
- 10. <u>http://www.cdeep.iitb.ac.in/webpage\_data/nptel/Mechanical/Heat%20and%20Mass%20Transfer/</u> Course\_home\_1.html
- 11. http://www.rinfra.com/energy\_generation.ht

# 13. POS AND PSOS ASSIGNMENT AND ITS STRENGTH OF ASSIGNMENT WITH EACH CO OF THE COURSE

| CO.  | Course Outcome                                                      | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р | Р |
|------|---------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|----|---|---|
| NO.  |                                                                     | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | S | S |
|      |                                                                     | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 0 | 0 |
|      |                                                                     |   |   |   |   |   |   |   |   |   |    | 1 | 2 |
|      | Apply laws of thermodynamics to                                     | 3 | 3 | 1 | 1 | - | 1 | - | - | - | 2  | 1 | 1 |
| CO1  | devices based on thermodynamics.                                    |   |   |   |   |   |   |   |   |   |    |   |   |
|      | Apply first law of thermodynamics for                               | 3 | 3 | 2 | 1 | 1 | - | - | - | - | 2  | 1 | 1 |
| CO2  | ideal gas in closed systems.                                        |   | 5 | - | - | - |   |   |   |   | -  |   | 1 |
|      | Solve problems by using steam table                                 | 3 | 3 | 2 | 2 | - | - | - | 1 | 1 | 3  | 1 | - |
| CO3  | and charts.                                                         |   |   |   |   |   |   |   |   |   |    |   |   |
| CO4  | Analyze broad based working of steam turbines.                      | 2 | 3 | 3 | 2 | 1 | 1 | - | - | 1 | 2  | 2 | - |
| CO 5 | Analyze broad based working of steam condensers.                    | 2 | 3 | 2 | 2 | 1 | 1 | - | - | 1 | 2  | 2 | - |
| CO 6 | Calculate rate of heat transfer by different modes of heat transfer | 2 | 3 | 2 | 2 | - | - | - | 1 | 1 | 2  | 2 | 1 |

#### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No Faculty members
- 1 Prof. R. N. Khadse Lecturer in Mechanical Engineering Department
- 2 Prof. V. B. Kumawat Lecturer in Mechanical Engineering Department
- 3 Prof. P.D. Shelke Lecturer in Mechanical Engineering Department

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEMACHINE DRAWINGCOURSE CODE6M403

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fourth                    |

#### 1. RATIONALE

The course machine drawing focuses on engineering drawing principles and procedures solely applied to mechanical engineering components. This course develops ability to comprehend and apply the skills and knowledge from design and manufacturing perspective.

#### 2. COMPETENCY STATEMENTS

This course is to be taught and implemented with the aim to develop in the student, the course outcomes (COs) leading to the attainment of following industry identified competency expected from this course:

"To interpret and prepare working drawing of a given mechanical component."

| Teaching Scheme Total |           |                    | Total       | Examination Scheme (Marks) |       |               |            |     |  |  |  |
|-----------------------|-----------|--------------------|-------------|----------------------------|-------|---------------|------------|-----|--|--|--|
| (Hours/ Credits)      |           | Credits<br>(L+T+P) | Theo        | ory                        | Pract | Total         |            |     |  |  |  |
| L                     | Т         | Р                  | С           | ESE                        | РТ    | ESE @<br>(OR) | PA<br>(TW) | 150 |  |  |  |
| 2                     | -         | 4                  | 6           | 80                         | 20    | 25#           | 25         | 150 |  |  |  |
| Du                    | ration of | the Examin         | ation (Hrs) | 04                         | 01    |               |            |     |  |  |  |

#### **3. TEACHING AND EXAMINATION SCHEME**

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

#### 4. COURSE OUTCOMES (COs)

The theory, practical experiences and relevant soft skills associated with this course are to be taught and implemented, so that the student demonstrates the following industry oriented COs associated with the above mentioned competency:

- 1. Develop lateral surface of various solids and sheet metal parts
- 2. Draw intersection curves of different solids.

- 3. Draw and use various drawing codes, conventions and symbols.
- 4. Interpret and draw the production drawings.
- 5. Interpret and prepare assembly and detailed drawings.

| Unit                                         | Major Learning Outcomes<br>(in cognitive domain)                                                                                                                                                   | <b>Topics and Sub-topics</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit– I<br>Development of<br>surfaces        | <ul><li>1a. Draw development of<br/>lateral surfaces of given<br/>solid and sheet metal parts.</li></ul>                                                                                           | <ul><li>1.1 Developments of Lateral surfaces of cube, prisms, cylinder, pyramids, cone.</li><li>1.2 Applications of Development of surfaces such as tray, funnel.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Unit-II<br>Intersection of<br>solids         | 2a. Apply curves of<br>intersection to different<br>pipe joints used in industry<br>(like sugar, dairy and<br>chemical plants)                                                                     | Curves of intersection of the surfaces of<br>the regular solids in the following cases:<br>2.1 Prism with prism( square), Cylinder<br>with cylinder, Square Prism with<br>Cylinder when<br>(i) the axes are at 90° and bisecting<br>(ii) The axes are at 90° and Offset<br>2.2 Cylinder with Cone: when axis of<br>cylinder is parallel to both the                                                                                                                                                                                                                                                                      |
| Unit– III<br>Conventional<br>representation. | <ul> <li>3a. Use IS SP-46 (1988) codes.</li> <li>3b. Draw &amp; Interpret standard conventions used in Mechanical working Drawing.</li> <li>3c. Apply standard conventions in practice.</li> </ul> | <ul> <li>reference planes and cone resting on<br/>base on HP with axis intersecting and<br/>offset from axis of cylinder.</li> <li>Standard conventions using IS SP – 46<br/>(1988)</li> <li>3.1 Conventional breaks in pipe, rod and<br/>shaft.</li> <li>3.2 Conventional representation of<br/>common features like slotted head,<br/>radial rib, knurling, serrated shaft,<br/>splined shaft, ratchet and pinion,<br/>repeated parts, square on shafts,<br/>holes on circular pitch, internal and<br/>external thread.</li> <li>3.3 Conventional representation of<br/>standard parts like Ball and roller</li> </ul> |

#### 5. DETAILED COURSE CONTENTS:-

|            | 1                               |                                         |
|------------|---------------------------------|-----------------------------------------|
|            |                                 | 3.4 Pipe joints and valves.             |
|            |                                 | 3.5 Counter sunk and Counter bored      |
|            |                                 | holes.                                  |
|            |                                 | 3.6 Tapers                              |
|            | 4a. Calculate tolerances on     | 4.1 Limits, Fits and Tolerances:        |
| Unit– IV   | machine components &            | Definitions, introductions to ISO       |
| Production | determine the type of fit       | system of Tolerance.                    |
|            | required.                       | a) Dimensional tolerances:-             |
| drawings   | 4b. Interpret and apply various | Terminology, selection and              |
|            | symbols on working              | representation of dimensional           |
|            | drawings (like surface          | tolerance- number and grade method.     |
|            | roughness, welding etc )        | Definitions concerning Tolerancing      |
|            |                                 | and Limits system, unilateral and       |
|            |                                 | bilateral tolerance, Hole and shaft     |
|            |                                 | base systems, Types of fits-            |
|            |                                 | Clearance, transition and               |
|            |                                 | Interference, Selection of fit for      |
|            |                                 | engineering applications. Calculation   |
|            |                                 | of limit sizes and identification of    |
|            |                                 | type of fit from the given sizes like   |
|            |                                 | Ø50 H7/s6, Ø30 H7/d9 etc.               |
|            |                                 | 4.2 Geometrical Tolerances: Types of    |
|            |                                 | geometrical tolerances, terminology     |
|            |                                 | for deviation, representation of        |
|            |                                 | geometrical tolerance on drawing.       |
|            |                                 | 4.3 General welding symbols, length and |
|            |                                 | size of weld, surface contour and       |
|            |                                 | finish of weld, all round and site      |
|            |                                 | weld, symbolic representation in        |
|            |                                 | Engineering practices and its           |
|            |                                 | interpretation.                         |
|            |                                 | 4.4 Machining symbol and surface        |
|            |                                 | texture: Indication of machining        |
|            |                                 | symbol showing direction of lay,        |
|            |                                 | sampling length, roughness grades,      |
|            |                                 | machining allowances,                   |
|            |                                 | manufacturing methods.                  |
|            |                                 | Representation of surface roughness     |
|            |                                 | on drawing.                             |
|            | 5a. Apply the procedure for     | 5.1 Introduction, types of assembly     |
| Unit– V    | assembly of components.         | drawing, accepted norms to be observed  |
|            | 5b. Identify various            | for assembly drawings, sequence for     |
| Details to | components in a given           | preparing assembly drawing. Bill of     |
| Assembly   |                                 | preparing assentory arawning, bin of    |

|                        | assembly and the sequence                                                                                                                                                                            | Material.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                        | of dismantling it.<br>5c. Draw Assembly from given<br>detailed drawings.                                                                                                                             | <ul> <li>5.2 Couplings: Oldham &amp; Universal couplings.</li> <li>5.3 Bearing: Roller, Foot Step &amp; Pedestal Bearing.</li> <li>5.4 Lathe: Single( pillar type) and Square tool Post.</li> <li>5.5 Bench vice &amp; Pipe Vice.</li> <li>5.6 Screw Jack.</li> <li>5.7 Valve: Steam stop, Non return valve.</li> <li>5.8 Piston and connecting rod of IC engine.</li> <li>5.9 Lathe machine: tail stock</li> <li>5.10 Drill Jig</li> <li>5.11 Any other assembly consisting of 6 -</li> </ul> |
| Unit– VI               | 6a. Apply the procedure for dismantling and assembly.                                                                                                                                                | <ul><li>10 parts.</li><li>6.1 Basic principles of process of dismantling the assembly into</li></ul>                                                                                                                                                                                                                                                                                                                                                                                           |
| Assembly to<br>Details | <ul> <li>6b. Identify various<br/>components in a given<br/>assembly and the sequence<br/>of dismantling it.</li> <li>6c. Draw and Interpret details<br/>from given Assembly<br/>drawing.</li> </ul> | <ul><li>components.</li><li>6.2 Details of all assemblies mentioned in unit V.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                       |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                   | Teachin | Distribution of Theory Mar |       |       |       |  |  |  |
|------|------------------------------|---------|----------------------------|-------|-------|-------|--|--|--|
| No.  |                              | g Hours | Hours R                    |       | Α     | Total |  |  |  |
|      |                              |         | Level                      | Level | Level | Marks |  |  |  |
| Ι    | Development of surfaces      | 04      |                            |       | 08    | 08    |  |  |  |
| II   | Intersection of solids       | 06      |                            |       | 16    | 16    |  |  |  |
| III  | Conventional representations | 02      | 08                         |       |       | 08    |  |  |  |
| IV   | Production drawing           | 04      |                            | 08    |       | 08    |  |  |  |
| V    | Details to Assembly          | 08      | 04                         | 04    | 12    | 20    |  |  |  |
| VI   | Assembly to Details          | 08      | 04                         | 04    | 12    | 20    |  |  |  |
|      | Total                        | 32      | 16                         | 16    | 48    | 80    |  |  |  |

*Legends:* R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

**Note:** This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| S.  | Practical Exercises                                                                                                                                                              | Unit | Approx.  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|----------|
| No. | (Learning Outcomes in to be achieved through practical's)                                                                                                                        | No.  | Hrs.     |
|     |                                                                                                                                                                                  |      | required |
| 1   | Develop surfaces of any two solids like cylinder, cone, pyramid<br>etc. (one Sheet)                                                                                              | Ι    | 04       |
| 2   | Draw curves of intersection of any two objects like cylinder-<br>cylinder, cylinder cone etc.(one Sheet)                                                                         | II   | 08       |
| 3   | Draw various Conventional Representation as per SP – 46 (1988)<br>(one sheet)                                                                                                    | III  | 06       |
| 4   | Draw Dimensional and Geometrical Tolerances, welding<br>symbols, surface roughness and Machining Symbols on given<br>figures and tables. (one sheet)                             | IV   | 06       |
| 5   | Develop Production drawing of at least two machine components<br>showing dimensional and geometrical tolerance, surface finish<br>etc. (One sheet)                               | IV   | 08       |
| 6   | Draw assembly drawing from the given detailed drawing showing<br>conventional representations, Dimensional and Geometrical<br>tolerances and surface finish symbols. (One sheet) | V    | 12       |
| 7   | Draw detailed drawings from given assembly drawing showing<br>conventional representation, Dimensional and Geometrical<br>tolerances and surface finish symbols. (One sheet)     | VI   | 12       |
| 8   | Redraw sheet No. 7 using Auto -Cad                                                                                                                                               |      | 08       |
|     | Total                                                                                                                                                                            |      | 64       |

Note

- i. Given in above tables is suggestive list of practical exercises. Teachers can design other similar exercises.
- ii. To attain the COs and competency, above listed Learning Outcomes (LOs) need to be undertaken to achieve the 'Applying Level' of Bloom's 'Cognitive Domain Taxonomy'.
- iii. For sheet No. 8, requisite knowledge about CAD commands will be given during practical hours only.

#### 8. SUGGESTED STUDENT ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related co-curricular activities which can be undertaken to accelerate the attainment of the various outcomes:

1. Student should maintain a separate A3 size sketch book which will be the part of term work and submit it along with drawing sheets. Following assignment should be drawn in the sketch book

- a. Minimum 2 problems each on Unit No I and II.
- b. Minimum 2 problems each on Unit No V to VI.
  - i. Note- Problems on sheet and in the sketch book should be different.
- 2. Students should collect Production drawings from nearby workshops/industries and try to visualize the part from the given views.
- 3. Prepare paper models of development of lateral surfaces of solids
- 4. Visit any sheet metal workshop and prepare a report related to type of components, dimensions, material, area of application, raw material required, name of operations performed.
- 5. Prepare clay models of solids showing curves of intersection
- 6. Measurement of dimensions using Vernier for small 4-5 mechanical parts (like piston, piston rings, piston pin, connecting rod, springs, crankshaft, pulley, bearing, nuts and bolts etc...). Make a sketch and then prepare drawing showing conventional representation, Dimensional and Geometrical tolerances and surface finish symbols.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies which the teacher can use to accelerate the attainment of the various learning outcomes in this course:

- a. Arrange visit to nearby industries and workshops for understanding various production drawings.
- b. Show video, animation films, solid modeling software to explain intersection of solid, Assembly and details
- c. Prepare wall charts for Dimensional and Geometrical Tolerances.

| S.No. | Title of Book        | Author                     | Publication                |
|-------|----------------------|----------------------------|----------------------------|
| 1.    | Machine Drawing      | N.D.Bhatt,                 | Charotar Publishing house  |
|       |                      | V.M. Panchal               | pvt ltd. ISBN No:978-93-   |
|       |                      |                            | 80358-63-5                 |
| 2.    | Engineering          | Bureau of Indian standard. | Third reprint, Octomber    |
|       | Drawing practice for |                            | 1998 ISBN No: 81-7061-     |
|       | schools and colleges |                            | 091-2                      |
|       | IS : SP- 46          |                            |                            |
| 4.    | Production Drawing   | L.K.Narayanan,P.Kannaich,  | New Age International      |
|       |                      | K.VenkatReddy              | Publication ISBN No: 978-  |
|       |                      |                            | 81-2243-501-6              |
| 5     | Engineering          | N.D. Bhatt                 | Charotar Publishing house  |
|       | Drawing              |                            | pvt ltd. ISBN No:978-93-   |
|       |                      |                            | 80358-17-8                 |
| 6     | A text book of       | P.S.Gill                   | S.K.Kataria and Sons,ISBN- |
|       | Machine Drawing      |                            | 13: 978-93-5014-416-9      |
| 7     | Machine Drawing      | Sidheshwar                 | Tata McGraw Hill ISBN No;  |
|       |                      |                            | 978-00-7460-337-6          |

#### **10. SUGGESTED LEARNING RESOURCES**

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED

The major equipment with broad specification mentioned here will usher in uniformity in conduct of experiments, as well as aid to procure equipment by administrators.

| S.  | Equipment Name with Broad Specifications                               | Exp.  |
|-----|------------------------------------------------------------------------|-------|
| No. |                                                                        | S.No. |
| 1.  | Drawing Table with Drawing Board of Full Imperial/ A1 size.            | All   |
| 2.  | Paper Models of objects for development of Lateral surfaces of solid.  | 1     |
| 3.  | Models of solids showing intersection curves.                          | 2     |
| 4.  | Models of machine components for conventional representation           | 3,4,5 |
| 5.  | Actual assemblies mentioned in unit V                                  | 6,7   |
| 6.  | Set of various industrial drawings being used by industries.           | all   |
|     | Drawing equipments and instruments for class room teaching-large size: |       |
|     | a) T-square or drafter (Drafting Machine).                             |       |
|     | b) Set squires (450 and 300-600)                                       |       |
|     | c) Protector.                                                          |       |
|     | d) Drawing instrument box (containing set of compasses and dividers).  |       |
|     | e) Drawing sheets, Drawing pencils, Eraser.Drawing pins / clips        |       |
| 7.  | LCD projector                                                          | All   |
|     |                                                                        |       |

#### **12. SOFTWARE/LEARNING WEBSITES**

- a. <u>sketch</u> up 7 software for solid modelling
- b. http://www.weldingtechnology.org
- c. <u>http://www.newagepublishers.com</u>
- d. Engineering graphics and Drawing v 1.0 from cognifront

#### 13. POS AND PSOS ASSIGNMENT AND ITS STRENGTH OF ASSIGNMENT WITH EACH CO OF THE COURSE

| CO. | Course Outcome                     | PO | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р |
|-----|------------------------------------|----|---|---|---|---|---|---|---|---|---|---|---|
| NO. |                                    | 1  | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | S | S |
|     |                                    |    | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 1 | 0 | 0 |
|     |                                    |    |   |   |   |   |   |   |   |   | 0 | 1 | 2 |
|     | Develop lateral surface of various | 1  | 2 | 2 | 1 | _ | - | _ | 1 | 2 | 1 | 2 | 1 |
| CO1 | solids and sheet metal parts       |    |   |   |   |   |   |   |   |   |   |   |   |
|     | Draw intersection curves of        | 1  | 3 | 2 | 1 | - | _ | _ | 1 | 2 | 1 | 2 | 1 |
| CO2 | different solids.                  |    |   |   |   |   |   |   |   |   |   |   |   |
|     | Draw and use various drawing       | 1  | 3 | 1 | 1 | 1 | - | 1 | 1 | 2 | 2 | 2 | - |
| CO3 | codes, conventions and symbols.    |    |   |   |   |   |   |   |   |   |   |   |   |
|     | Interpret and draw the production  | 2  | 3 | 3 | 2 | 1 | - | 1 | 1 | 2 | 2 | 2 | 2 |
| CO4 | drawings.                          |    |   |   |   |   |   |   |   |   |   |   |   |
|     | Interpret and prepare assembly and | 2  | 3 | 3 | 2 | 1 | - | - | 2 | 2 | 2 | 2 | 2 |
| CO5 | detailed drawings.                 |    |   |   |   |   |   |   |   |   |   |   |   |

#### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 Vasudeo Kumawat Lecturer in Mech. Engineering, Govt. Polytechnic, Aurangabad
- 2 Manik B Sanap Lecturer in Mech. Engineering, Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEMEASUREMENT AND CONTROLCOURSE CODE6M207

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fourth                    |

#### **1. RATIONALE**

In practical field diploma engineer is often expected to measure or control various quantities/ parameters of various job& systems. Sound knowledge of measurement of various quantities associated with particular engineering application/ process/ equipment is very necessary. Considering vital importance of measurement and control it is essential that diploma engineer should have good proficiency of measurement and control technique.

The course aims at making a Mechanical Engineering student familiar with the principles of instrumentation, transducers & measurement of non-electrical parameters like temperature, pressure, flow, speed, force, strain and stress.

#### **2COMPETENCIES**

At the end of studying this course students will be able to

"To know various measuring instruments, control systems their working principaland applications"

#### **3. TEACHING AND EXAMNATION SCHEME**

| Teaching Scheme Total             |          | Examination Scheme (Marks) |                    |      |     | )           |            |       |
|-----------------------------------|----------|----------------------------|--------------------|------|-----|-------------|------------|-------|
|                                   | Hours/ C |                            | Credits<br>(L+T+P) | Theo | ory | Pract       | ical       | Total |
| L                                 | Т        | Р                          | С                  | ESE  | РТ  | ESE<br>(OR) | PA<br>(TW) |       |
| 3                                 | 1        | 2                          | 6                  | 80   | 20  | 25#         | 25         | 150   |
| Duration of the Examination (Hrs) |          |                            | 03                 | 01   |     |             |            |       |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online.

#### 4. COURSE OUTCOMEs (COs):

- 1) Identify primary and secondary transducers in instrument.
- 2) Distinguish between various types of errors in a given instrument.

- 3) Interpret principle, construction& working of given measuring instrument
- 4) Select appropriate controller and control system for a given application

GPA

- 5) Calibrate the given instrument.
- 6) Use relevant instrument for measurement of different variables.

#### **5. DETAILED COURSE CONTENTS**

| Unit            | Major Learning Outcomes      | Topics and Sub-topics               |
|-----------------|------------------------------|-------------------------------------|
|                 | (in cognitive domain)        |                                     |
| Unit – I        | 1a. Describe significance of | 1.1 Introduction, significance of   |
|                 | mechanical                   | mechanical measurements,            |
| Measurement and | measurement.                 | methods of measurements,            |
| measurement     | 1b. classify instruments and | classification of instruments,      |
| system          | state the function of        | functions of instruments and        |
|                 | instrument                   | measuring systems.                  |
|                 | 1c. Compare various          | 1.2 Generalized measurement         |
|                 | standards.                   | systems and its functional          |
|                 | 1d. Identify different       | elements.                           |
|                 | elements of                  | 1.3 Basic standards and units.      |
|                 | instrumentation system       | Primary, Secondary and              |
|                 |                              | working standards.                  |
|                 |                              | (No derivations & Numerical)        |
|                 |                              |                                     |
| Unit – II       | 2a Describe static and       | 2.1 Static terms & Characteristics, |
|                 | dynamic characteristics      | Range & Span,                       |
| Instrument      | of instruments.              | Accuracy & Precision, Reliability   |
| Characteristics |                              | & Errors, Correction,               |
|                 | 2b Identify different errors | Calibration. Hysteresis & Dead      |
|                 | in instruments.              | zone, Drift, Sensitivity, Threshold |
|                 |                              | & Resolution, Repeatability &       |
|                 |                              | Reproducibility, Linearity.         |
|                 |                              | 2.4 Dynamic Terms &                 |
|                 |                              | characteristics, Speed of Response  |
|                 |                              | & Measuring Lag, Fidelity &         |
|                 |                              | Dynamic Error, Overshoot, Dead      |
|                 |                              | Time & Dead zone                    |
|                 |                              | 2.3 Measurement of Errors           |
|                 |                              | Introduction, Classification of     |
|                 |                              | Errors like Instrumental            |
|                 |                              | Error, Environmental Error,         |
|                 |                              | Translational & Signal              |
|                 |                              | Transmission Error,                 |
|                 |                              | Observation Error, Operational      |

6M207

|                   |                          | Errors.                                 |
|-------------------|--------------------------|-----------------------------------------|
|                   |                          | (No Derivations)                        |
| Unit – III        | 3a State need of control | 3.1 Need of Control System, Manual      |
|                   | system                   | Vs. Automatic Control System,           |
| Introduction to   | 3b Review advantages and | Advantages of Automatic Control         |
| control systems & | application of           | System, Open Loop and Closed            |
| Controllers       | Automatic Control        | Loop Control System and their           |
|                   | System                   | comparison, Concept of Feedback,        |
|                   | 3c Explain Open Loop and | Definition of Transfer Function         |
|                   | Closed Loop Control      | 3.2 Basic types of control action like  |
|                   | System                   | ON/OFF, Proportional, Integral,         |
|                   | 3d Compare various types | Derivative Type. Comparison of          |
|                   | of control actions       | Pneumatic and Hydraulic Control         |
|                   | 3e Identify different    | System.                                 |
|                   | elementsof servo motor   | 3.3 Servo motor-Construction &          |
|                   | and stepper motor        | application in position control system, |
|                   |                          | Stepper motor-Construction &            |
|                   |                          | applications                            |
| Unit – IV         | 4a List low and high     | 4.1 DefinitionUnits of Pressure,        |
|                   | Pressure Measuring       | Terminology of Pressure                 |
| Pressure          | instruments.             | Measurement.                            |
| Measurement       | 4b Select appropriate    | 4.2 Low Pressure Measurement,           |
|                   | pressure measuring       | McLeod Gauge, Thermal                   |
|                   | device.                  | Conductivity Gauge, Ionization          |
|                   |                          | Gauge                                   |
|                   |                          | 4.3 High Pressure Measurement           |
|                   |                          | Manometers, Electrical                  |
|                   |                          | Resistance Pressure Gauge               |
|                   |                          | (No Derivations & Numerical)            |
| Unit – V          | 5a Classify different    | 5.1 Definition of Flow, Different       |
|                   | types of Fluid Flow.     | types of Flows, Classification          |
| Flow Measurement  | 5b Choose a flow meter   | of Fluid Flow,                          |
|                   | for a specific           | 5.2 Measurement Techniques              |
|                   | application              | Inferential & Positive Flow             |
|                   |                          | Meters, Cup & Vane                      |
|                   |                          | Anemometers, Turbine Meter, Hot         |
|                   |                          | Wire Anemometer, Ultrasonic Flow        |
|                   |                          | Meter,                                  |
|                   |                          | (No Derivations & Numerical)            |
| Unit – VI         | 6a State different       | 6.1 Definition of Temperature,          |
|                   | temperature scales.      | Utility of Temperature                  |
| Temperature       | 6b Use of temperature    | Measurement, Temperature Scales,        |
| Measurement       | measuring devices as     | classification of Temperature           |
| -                 | 0                        | 1                                       |

|               | per temperature range.                    | Measuring Instruments               |
|---------------|-------------------------------------------|-------------------------------------|
|               | 6c Describe measurement                   | 6.2 Liquid in Glass                 |
|               | techniques for                            | Thermometers, Thermocouples-        |
|               | temperature                               | Laws, Elements of                   |
|               | measurement.                              | Thermocouple System,                |
|               |                                           | Thermocouple Materials,             |
|               |                                           | Resistance Thermometer,             |
|               |                                           | Thermistors, Radiation&optical      |
|               |                                           | Pyrometer.                          |
|               |                                           | (No Derivations & Numerical)        |
| Unit – VII    | 7a Describe working of                    | 7.1 Concept of Force, Work, Torque  |
|               | Platform and                              | & Power, Force measurement by       |
| Force & Power | Pendulum Scale,                           | using scales- Platform and          |
| Measurement   | Analytical                                | Pendulum Scale, Balances:           |
|               | andElectromagnetic                        | Analytical and Electromagnetic      |
|               | balance,                                  | balance                             |
|               | 7b Explain construction                   | 7.2 Shaft power measurement –       |
|               | and working of given                      | Mechanical brakes, Hydraulic        |
|               | dynamometers.                             | dynamometer, Eddy Current           |
|               |                                           | dynamometer and Strain Gauge        |
|               |                                           | Transmission dynamometer.           |
|               |                                           | (No Derivations & Numerical)        |
| Unit – VIII   | 8a. Identify various                      | 8.1 Liquid level measurement,       |
|               | techniques of liquid level                | sight glass, Float gauge, float     |
| Miscellaneous | measurement.                              | and shaft, bubbler or purge         |
| Measurement   |                                           | system, float operated rheostat     |
|               | 8b. Select strain gauge for a             | 8.2 Strain Measurement              |
|               | specific application                      | Definition of Strain & Utility of   |
|               |                                           | Strain Measurement. Types of Strain |
|               | 8c. Describe measurement                  | Gauges & Gauge Factor, Strain       |
|               | techniques for displacement               | Measurement Techniques, Strain      |
|               | Measurement.                              | Gauge Materials,                    |
|               |                                           | 8.3 Resistance Strain Gauge-        |
|               | 8d. Classify Speed<br>Measurement devices | Bonded & Unbounded.                 |
|               | Measurement devices                       | Linear Variable Differential        |
|               |                                           | Transducer & Rotary variable        |
|               |                                           | DifferentialTransducer.             |
|               |                                           | (No Derivations & Numerical)        |
|               |                                           | 8.4Mechanical tachometer,           |
|               |                                           | Electrical tachometers: Drag cup    |
|               |                                           | Tachometer, Inductive pickup        |
|               |                                           | type, photoelectric type,           |
|               |                                           | Stroboscope.                        |

| (No Derivations & Numerical      |
|----------------------------------|
| 8.5 Sound Measurement-           |
| Introduction, carbon microphone, |
| Electromagnetic microphone       |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

GPA

| Unit | Unit Title                        | Teaching | Distri | ibution of ' | Theory Ma | rks   |
|------|-----------------------------------|----------|--------|--------------|-----------|-------|
|      |                                   | Hours    | R      | U            | A         | Total |
|      |                                   |          | Level  | Level        | Level     | Mark  |
|      |                                   |          |        |              |           | S     |
| 1    | Measurement and measurement       | 4        | 6      | 2            |           | 8     |
|      | system                            | 4        | 0      | Δ            | -         | 0     |
| 2    | Instrument Characteristics        | 4        | 2      | 4            | 2         | 8     |
| 3    | Introduction to control systems & | 0        | 0      |              | 4         | 10    |
|      | Controllers                       | 8        | 2      | 6            | 4         | 12    |
| 4    | Pressure Measurement              | 6        | 2      | 6            | 2         | 10    |
| 5    | Flow Measurement                  | 4        | 2      | 4            | 4         | 10    |
| 6    | Temperature Measurement           | 4        | 2      | 6            | 2         | 10    |
| 7    | Force & Power Measurement         | 6        | 2      | 4            | 4         | 10    |
| 8    | Miscellaneous Measurement         | 12       | 2      | 6            | 4         | 12    |
|      |                                   | 12       | 2      | 0            |           | 12    |
|      | Total                             | 48       | 20     | 38           | 22        | 80    |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr. No. | Unit<br>Number | Practical Exercises                              | Hrs.<br>required |
|---------|----------------|--------------------------------------------------|------------------|
| 1       | Ι              | 1.1 Introduction to measurement & control lab    | 4                |
|         |                | 1.2 Correlate generalized measurement system     |                  |
|         |                | & its components with example like Bourdon       |                  |
|         |                | Pressure gauge.                                  |                  |
| 2       | II             | 2.1. Identify different types of errors in given | 2                |
|         |                | measurement system                               |                  |
|         |                | 2.2 Study of Dead weight Tester for Calibration  | 2                |
|         |                | of pressure gauge using web videos and lab       | 2                |
|         |                | model                                            |                  |
| 3       | III            | Demo and study of ON-OFF temperature             | 2                |
|         |                | controller on furnace                            |                  |
| 4       | IV             | Measurement of Pressure by using any one         | 4                |
|         |                | Method Bourdon Pressure/ McLeod Gauge.           |                  |
| 5       | V              | Measurement of Flow by using any one             | 4                |

|    |      | Rotameter /Anemometer                            |    |
|----|------|--------------------------------------------------|----|
| 6  | VI   | Measurement of Temperature by using anyone       | 4  |
|    |      | Thermocouples / Thermistors.                     |    |
| 7  | VIII | Force measurement on load cell demonstrator.     | 2  |
| 8  | VIII | Measurement of Speed using any one               | 2  |
|    |      | Stroboscope/Inductive pick up/optical transducer |    |
| 9  | VIII | Study of Strain measurement by strain gauge      | 2  |
|    |      | using audio visuals from website and lab setup   |    |
| 10 | VIII | Measurement of Displacement using linear         | 2  |
|    |      | Variable differential transducer.                |    |
| 11 | VIII | Measurement of Sound using sound level meter     | 2  |
|    |      | Total                                            | 32 |

Notes:

- a. It is compulsory to prepare a journal for exercises. It is also required to get each exercise recorded in journal, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.
- b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.
- c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.
- d. Student activities are compulsory and are part of term work.
- e. Term work content of industrial visit report should also include following.
- i. Brief details of industry visited.

ii. Type, location, products, rough layout, human resource, etc of industry.

iii. list instruments used for measurement. Report on process of calibration of instruments.

iv. Safety norms and precautions observed.

- v. Student's own observation on industrial environment, productivity concepts,
- quality consciousness and quality standards, cost effectiveness, culture and attitude.
- vi. Any other details / observations asked by accompanying faculty.
- f. For practical ESE part, students are to be assessed for competencies achieved.

# 8. SUGGESTED LIST OF STUDENT ACTIVITIES(To be accomplished in Tutorials 1 hour per week)

GPA

| Sr. | Activities                                                                     | Hrs(16) |
|-----|--------------------------------------------------------------------------------|---------|
| No. |                                                                                |         |
| 1   | Draw skeleton sketches of different instruments on half imperial drawing       | 2       |
|     | sheet. Attach same with term work.                                             |         |
| 2   | Collect practical information regarding various standards                      | 2       |
|     | (primary, secondary, working standard)                                         |         |
| 3   | Collect specifications of instruments from web search.                         | 2       |
| 4   | List instruments available in laboratories of department. Record scale ranges  | 2       |
| 5   | List Industrial applications of various pressure gauges and temperature        | 2       |
|     | gauges                                                                         |         |
| 6   | List Industrial applications of various controllers & strain gauges            | 2       |
| 7   | Convert units such as pressure kg/sq.cm to lb/sq.inch, temperature deg C to    | 2       |
|     | deg. F.                                                                        |         |
| 8   | Visit to testing and calibration laboratories. Observe process of calibration. | 2       |

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

#### **10. SUGGESTED LEARNING RESOURCES**

| Sr. | Title of Book                  | Author and Publication         |
|-----|--------------------------------|--------------------------------|
| No  |                                |                                |
| 1   | Mechanical measurements and    | A.K.Sawhney                    |
|     | instrumentation                | Dhanpatrai and sons, New Delhi |
| 2   | Mechanical measurements and    | R.V.Jalgaonkar                 |
|     | Control                        | Everest Publishing house Pune  |
| 3   | Mechanical and Industrial      | R.K.Jain                       |
|     | measurements                   | Khanna Publications ,New Delhi |
| 4   | Instrumentation measurements   | B.C.Nakra and K.K.Chaudhari    |
|     | and analysis                   | Tata McGraw Hill, New Delhi    |
| 5   | Industrial instrumentation and | S.K.Singh                      |
|     | Control                        | Tata McGraw Hill, New Delhi    |
| 6   | Mechanical Measurements        | S.L.Gavhale                    |
|     |                                | NiraliPrakashan Pune           |

6M207

7

| GPA |
|-----|
|     |
|     |

Control System Engineering

Ogatta, Prentice Hall of India Pvt. Ltd.

#### 11. LIST OF MAJOR EQUIPMENT/ INSTRUMENT WITH BROAD SPECIFICATIONS

| Sr.No. | Major equipment/ Instrument with Broad Specification                    | Quantity |
|--------|-------------------------------------------------------------------------|----------|
| 1      | Bourdon tube pressure gauge model.                                      | 1        |
|        | Range 0-28 kg/sq.cm, Mounting position Vertical (NL90 $\pm 5^{\circ}$ ) |          |
| 2      | Dead weight pressure gauge tester.                                      | 1        |
|        | Pressure ranges from 10-200 psi (1-15 bar)                              |          |
|        | Shell spindle oil 22, viscosity 40 cs@ 20°C                             |          |
| 3      | Rotameter.                                                              | 2        |
|        | Water (20°C): 0.002 l/h min, 10 m3/h max,                               |          |
|        | max. Process pressure depending on tube 6-16 bar                        |          |
| 4      | Venturimeter.                                                           | 2        |
|        | Pipe OD 114.3 mm, ID 97.2 mm. pipe thickness 8.56 mm, upstream          |          |
|        | and downstream angle 30 deg. Max. pressure 100 bar, operating           |          |
|        | temp.260 deg c.                                                         |          |
| 5      | Thermocouple.                                                           | 1        |
|        | Material type E (chromel (+) purple, constantan (-) red, range 0-293    |          |
|        | deg.c, limits of error +- 4%.                                           |          |
| 6      | RTD (resistance temperature detector)                                   | 1        |
|        | Nikel- iron -80 to 260 deg c.                                           |          |
| 7      | Load cell demonstrator                                                  | 1        |
|        | Excitation voltage Operating range 10-14 VDC, Maximum Current: 3        |          |
|        | mA @ 12VDC excitation, temp. range 0-100 deg.F standard.                |          |
| 8      | Stroboscope                                                             | 1        |
|        | Flash Rate Range: High Range: 60 – 120,000 FPM, 1 – 2,000Hz, Low        |          |
|        | Range 60 – 12,000 FPM, 1 – 200Hz, Accuracy $0.02 \% \pm 1$ digit at 77° |          |
|        | F                                                                       |          |
| 9      | LVDT (Linear Variable Differential Transducer)                          | 1        |
|        | Power: $\pm 5$ V dc, Ambient Temperature: -40 to 50 deg.C (-40 to       |          |
|        | 122 deg F)                                                              |          |
|        | Input: 0 to 1.0 V ac from LVDT based belt scale, Output: 0 to           |          |
|        | 50mV dc to Accumass BW100                                               |          |

#### **12. LEARNING WEBSITE & SOFTWARE**

List of Software/Learning Websites.

- a <u>http://www.ni.com/white-paper/13034/en/</u>
- b <u>http://encyclopedia.che.engin.umich.edu/Pages/ProcessParameters/PressureMeas</u> urement/PressureMeasurement.html
- $c \quad \underline{http://www.slideshare.net/snesajid/temp-measurement}.$
- d <u>https://www.sensorex.fr/meggitt/lvdt-2/</u>

| SR.<br>NO | Course Outcome                                                                     | Р<br>О<br>1 | PO<br>2 | PO<br>3 | P<br>O<br>4 | P<br>O<br>5 | P<br>O<br>6 | P<br>O<br>7 | P<br>O<br>8 | P<br>O<br>9 | PO<br>10 | PS<br>O1 | PS<br>O2 |
|-----------|------------------------------------------------------------------------------------|-------------|---------|---------|-------------|-------------|-------------|-------------|-------------|-------------|----------|----------|----------|
| 1         | Identify primary and secondary transducers in instrument.                          | 2           | 2       | 2       | 2           | -           | -           | -           | -           | -           | -        | 2        | 2        |
| 2         | Distinguish between<br>various types of errors in<br>a given instrument.           | 3           | 3       | 3       | 2           | -           | -           | -           | -           | -           | -        | 2        | 3        |
| 3         | Interpret principle,<br>construction & working<br>of given measuring<br>instrument | 3           | 2       | 3       | 2           | -           | -           | -           | -           | -           | 2        | 2        | 3        |
| 4         | Select appropriate<br>controller and control<br>system for a given<br>application  | 2           | 2       | 3       | 2           | -           | -           | -           | 1           | -           | 1        | 2        | 2        |
| 5         | Calibrate the given instrument.                                                    | 3           | 3       | 2       | 2           | -           | -           | -           | -           | -           | -        | 2        | 1        |
| 6         | Use relevant instrument<br>for measurement of<br>different variables.              | 3           | 3       | 3       | 2           | -           | -           | -           | -           | -           | -        | 2        | 3        |

#### 13. MAPPING OF PROGRAMME OUTCOMES (Pos) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (Cos)

GPA

#### **Course Curriculum Design Committee**

Sr Name of the Faculty Designation and Institute

No members

- 1 Prof. S.M Aher Lecturer in Mechanical Engineering Department
- 2 Prof. N.S.Khandagale Lecturer in Mechanical Engineering Department

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEBASICS OF ELECTRICAL ENGINEERING AND<br/>ELECTRONICSCOURSE CODE6R203

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical/Automobile                             | Third/Fourth              |

#### 1. RATIONALE

This course is intended to help the students to get clear idea of fundamentals of electrical and electronic components and develop practical skills in using various types of components employed in electrical & electronic industries. More over this course is intended to develop skills of testing electrical and electronics components as well as devices that will be really needed for the project and setting up of many experiments in other basic and applied technology courses.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Measure and use various electrical machines /electronic instrument by studying fundamentals"

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme                   |           | Total |                    | Exami | ination Scheme (Marks) |                  |            |       |
|-----------------------------------|-----------|-------|--------------------|-------|------------------------|------------------|------------|-------|
|                                   | (Hours/ C |       | Credits<br>(L+T+P) |       |                        | ry Practical     |            | Total |
| L                                 | Т         | Р     | С                  | ESE   | РТ                     | ESE @<br>(PR/OR) | PA<br>(TW) | 150   |
| 4                                 | -         | 2     | 6                  | 80    | 20                     |                  | 50         | 150   |
| Duration of the Examination (Hrs) |           |       | 03                 | 01    |                        |                  |            |       |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; PA- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1) Identify AC and DC supply
- 2) Apply Faraday's law, Lenz's law, Fleming's right hand rule
- 3) Select a motor for a given application.
- 4) Identify and test different electronic components.
- 5) Use principles of electronic circuit operations and its applications
- 6) Compare working of different types of power supplies

#### **5. DETAILED COURSE CONTENTS**

| I Loit          | Maior Lagraine Outgoing          | Torios And Sub Torios                    |
|-----------------|----------------------------------|------------------------------------------|
| Unit            | Major Learning Outcomes          | Topics And Sub-Topics                    |
|                 | (Cognitive Domain Only)          |                                          |
| Unit - I        | 1a. Identify AC and DC           | 1.1 Current, emf, Electric Potential,    |
| AC and DC       | supply.                          | potential difference, Resistance,        |
| Fundamentals    | 1b. Determine the resistance of  | Work, power, Energy.                     |
|                 | material.                        | 1.2 Laws of resistance, resistivity,     |
|                 | 1c. Derive the equation for      | 1.3 Concept of AC and DC                 |
|                 | series and parallel              | 1.4 Ohms law                             |
|                 | connection of resistance.        | 1.5 Series and parallel combination of   |
|                 | 1d. Identify the commonly        | resistance                               |
|                 | 1e. Used components used in      | 1.6 Kirchhoff's laws                     |
|                 | 1f. Electrical engineering.      | 1.7 Specifications of commonly used      |
|                 | 1g. Calculate electricity bill.  | electrical appliances, calculation of    |
|                 |                                  | electricity bill.                        |
|                 |                                  | 1.8 (Simple numerical).                  |
|                 |                                  | 1.9 Principle of generating an           |
|                 |                                  | 1.10 Alternating voltage                 |
|                 |                                  | 1.11 Definition of Cycle, Time period,   |
|                 |                                  | Frequency, Amplitude, Phase and          |
|                 |                                  | Phase difference, Average value,         |
|                 |                                  | R.M.S. value and Power Factor.           |
|                 |                                  | 1.12 Concept of power Triangle           |
|                 |                                  | 1.13 Advantages of three phase over      |
|                 |                                  | single phase                             |
| Unit - II       | 2a. Understand the terms         | 2.1 Flux, flux density, magnetic field   |
| Magnetism &     | related to magnetism             | strength, mmf, reluctance, permeability. |
| Electromagnetic | 2b. Compare electric circuit     | strength, mm, refuctance, permeability.  |
| Induction       | and magnetic circuit.            | 2.2 Comparison between electric and      |
| muuchom         | 2c. Identify the laws applicable | magnetic circuits.                       |
|                 | to different machine.            | 2.3 Faraday's laws of electromagnetic    |
|                 |                                  | induction, Lenz's law, Fleming's right   |
|                 |                                  | hand rule for Generators, Fleming's left |
|                 |                                  | hand rule for Motors.                    |
|                 |                                  |                                          |
| L               |                                  |                                          |

| <b></b>            |                               |                                              |
|--------------------|-------------------------------|----------------------------------------------|
| Unit - III         | 3a. Select suitable type of   | 3.1 Construction, working and                |
| Electrical         | transformer for a given       | classification of transformer                |
| machines           | circuit                       | 3.2 Significance of Emf equation             |
|                    | 3b. Compare squirrel cage and | (no derivation) Voltage ratio, current ratio |
|                    | slip ring induction motor.    | and transformation ratio                     |
|                    | 3c. Select a motor according  | 3.3 Three phase induction motor              |
|                    | to application                | Construction, types, principle of            |
|                    |                               | working and applications                     |
|                    |                               | 3.4 Alternator: - construction and working   |
|                    |                               | principle and application.                   |
|                    |                               | 3.5 Single phase Induction motors:           |
|                    |                               | Construction, , principle of operation       |
|                    |                               | and applications of $-a$ ) Split phase       |
|                    |                               | induction motor b) Capacitor start           |
|                    |                               | capacitor run induction motor                |
|                    |                               | 3.6 Universal motor: Construction,           |
|                    |                               | principle of operation and applications.     |
|                    |                               | 3.7 Circuit diagram of different DC motor    |
|                    |                               | -                                            |
|                    | As Evaluin the modules of     | and its application.                         |
| Unit - IV          | 4a. Explain the working of    | 4.1 IIntroduction to electronic devices,     |
| Electronic Devices | Light Emitting Diode          | their symbols, principle of working          |
|                    | ,Photo diode, LDR,            | and testing procedure – Diode, Zener         |
|                    | Photovoltaic cell, varactor   | diode, Power diode, Varactor diode,          |
|                    | diode, Point contact diode.   | 4.2 Bipolar Junction Transistor (BJT),       |
|                    | 4b. Explain the working of    | Field Effect Transistor(FET) - JFET &        |
|                    | Bipolar Junction Transistor   | MOSFET, Uni-junction                         |
|                    | (BJT), Field Effect           | Transistor(UJT), power devices –             |
|                    | Transistor (FET) - JFET &     | DIAC,TRIAC, SCR,                             |
|                    | MOSFET, Uni-junction          | 4.3 Photo devices-, LDR, Photo diode,        |
|                    | Transistor (UJT), power       | Photo transistor, LED & LED display (        |
|                    | devices – DIAC, TRIAC,        | 7 segment), Liquid crystal                   |
|                    | and SCR.                      | display(LCD), opto-coupler,                  |
|                    | 4c. Explain the working of    | thermistor-NTC,PTC                           |
|                    | Photo devices-, LDR,          |                                              |
|                    | Photo diode, Photo            |                                              |
|                    | transistor, LED & LED         |                                              |
|                    | display (7 segment), Liquid   |                                              |
|                    | crystal display(LCD), opto    |                                              |
|                    | -coupler, thermistor-         |                                              |
|                    | NTC,PTC                       |                                              |
|                    | N1C,F1C                       |                                              |

| I Lot X                    | 5. Differentiate the mering                                                                                                                                                                                                                                 | 5.1 Cinquit diagram and anomation Half                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit - V<br>Power supplies | <ul> <li>5a. Differentiate the working of half and full wave bridge rectifier along with sketches.</li> <li>5b. State and explain principle of operation of regulated and unregulated power supply.</li> <li>5c. Compare Different types of UPS.</li> </ul> | <ul> <li>5.1 Circuit diagram and operation- Half wave, full wave &amp; bridge rectifier. Filters – L, C, L-C, π filter</li> <li>5.2 Concept of unregulated power supply, regulated power supply- line regulation &amp; load regulation.</li> <li>5.3 Principle of operation, block diagram and application of shunt regulated power supply, series regulated power supply, switch mode power supply (SMPS), 3 pin IC regulated, IC 723 adjustable power supply.</li> <li>5.4 Block diagram of UPS, Concept of online and off line UPS.</li> </ul>                                                                                          |
| Unit – VI<br>Transistor    | <ul> <li>6a. Compare working of CB, CE and CC AMP</li> <li>6b. Compare and contrast</li> <li>6c. Different types of Power amplifiers.</li> <li>6d. Identify oscillators and their usage in different applications.</li> </ul>                               | <ul> <li>6.1 Transistor as a switch and amplifier, single stage transistor amplifier CB, CE and CC configuration and their applications, RC coupled and direct coupled amplifier, their frequency response and application.</li> <li>6.2 Power amplifier- class A, class B, class C, class AB, their comparison on operating point, conduction cycle, efficiency, application.(No circuits expected)</li> <li>6.3 Oscillator – Requirement of oscillator circuit, Barkhauson's criteria of oscillator, circuit diagram and its application Phase shift oscillator, Hartley oscillator, Colpitts oscillator, Crystal oscillator.</li> </ul> |

### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                               | Teaching | Distri | ibution of | of Theory Marks |       |  |
|------|------------------------------------------|----------|--------|------------|-----------------|-------|--|
| No.  |                                          | Hours    | R      | U          | Α               | Total |  |
|      |                                          |          | Level  | Level      | Level           | Marks |  |
| Ι    | AC and DC Fundamentals                   | 13       | 4      | 8          | 4               | 16    |  |
| Π    | Magnetism &<br>Electromagnetic Induction | 08       | 2      | 4          | 2               | 08    |  |
| III  | Electrical machines                      | 11       | 2      | 8          | 6               | 16    |  |

| IV | Electronics Devices | 12 | 4  | 8  | 4  | 16 |
|----|---------------------|----|----|----|----|----|
| V  | Power supplies      | 09 | 2  | 4  | 2  | 08 |
| VI | Transistors         | 11 | 2  | 8  | 6  | 16 |
|    | Total               | 64 | 16 | 40 | 24 | 80 |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr | Unit | Practical Exercises                                                | Appx.  |
|----|------|--------------------------------------------------------------------|--------|
| •  | No.  | (Outcomes in Psychomotor Domain)                                   | Hrs.   |
| Ν  |      |                                                                    | requir |
| 0. |      |                                                                    | ed     |
|    |      | ELECTRICAL                                                         |        |
|    |      |                                                                    |        |
| 1  | Ι    | A) Observe your electrical laboratory and identify the major       |        |
|    |      | equipment's with their ratings.                                    |        |
|    |      | B) Prepare charts of electrical safety and understand operation of |        |
|    |      | fire extinguisher.                                                 |        |
|    |      | C) Use electrical tools such as pliers, screw driver, insulation   | 02     |
|    |      | cutter, tester etc.                                                |        |
| 2  | Ι    | Verify ohms law                                                    | 02     |
| 3  | Ι    | Verify Kirchhoff's Voltage Law.                                    | 02     |
| 4  | Ι    | Verify Kirchhoff's current Law                                     | 02     |
| 5  | III  | Calculate transformation ratio of a given transformer.             | 02     |
| 6  | III  |                                                                    | 04     |
| 6  | III  | Start and reverse of three phase induction motor.                  | 04     |
| 7  | III  | Start and reverse of Single phase induction motor                  |        |
|    |      |                                                                    | 02     |
|    |      | ELECTRONICS                                                        |        |
|    |      |                                                                    |        |

| 8  | IV       | Plot the V-I Characteristic of PN Junction diode.                                     | 02 |  |  |  |
|----|----------|---------------------------------------------------------------------------------------|----|--|--|--|
| 9  | IV       | Obtain the V-I Characteristic of Zener diode                                          | 02 |  |  |  |
| 10 | IV       | Obtain the V-I Characteristic of Light emitting diode.                                |    |  |  |  |
| 11 | V        | Test half wave rectifier using CRO and measure PIV of diode                           | 02 |  |  |  |
| 12 | V        | Test full wave rectifier using CRO and measure PIV of diode                           | 02 |  |  |  |
| 13 | V        | Test full wave bridge rectifier with C- filter using CRO                              | 02 |  |  |  |
| 14 | VI       | Obtain input and output characteristics and calculate gain of CE amplifier circuit    | 02 |  |  |  |
| 15 | VI       | Obtain input and output characteristics and calculate gain of<br>CB amplifier circuit | 02 |  |  |  |
|    | Total 32 |                                                                                       |    |  |  |  |

#### 8. SUGGESTED STUDENTS ACTIVITIES

- 1. Make a switch board using indicator, fuse, switches, plug pin socket and regulator. Then operate lamp and fan load.
- 2. Identify and select various measuring instruments as per required range.
- 3. Calculate electricity bill for student's hostel.
- 4. Write the specifications of appliances used at home.
- 5. See the videos showing working of different electrical machines and power generation
- 6. Prepare journals based on practical performed in laboratory.
- 7. Find Specifications and package of Diode, Transistor, etc. Prepare chart for characteristic of various electronics components..

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- 1. Improved Lecture methods-
- 2. Q & A technique.
- 3. Demonstration
- 4. Seminars

- 5. Activity based learning.
- 6. Arrange visit to power station / Generating plant.
- 7. Motivate students to observe different types of electrical loads around them.
- 8. Arrange visit to Electronics industry

#### **10. SUGGESTED LEARNING RESOURCE**

| S.<br>No. | Title of Book                               | Author                  | Publication                                         |
|-----------|---------------------------------------------|-------------------------|-----------------------------------------------------|
| 1         | Electrical Technology Vol-1                 | Theraja, B. L.          | S. Chand & Co. Ltd., 2011<br>or latest edition      |
| 2         | Basic Electrical<br>Engineering             | V.N.Mittle              | Tata McGraw-Hill latest edition.                    |
| 3         | Principles of<br>Electrical Engineering     | Gupta, B.R.             | S.K. Kataria,2012 or latest edition                 |
| 4         | Basic Electrical<br>Engineering             | Rao, Uma. K.            | Pearson Education, India, 2012<br>or latest edition |
| 5         | Basic Electrical<br>Engineering             | Ananda<br>Murthy, R. S. | Pearson Education, India,2011 or<br>latest edition  |
| 6         | A Course in Electrical<br>Technology Vol. I | Gupta ,J.B.             | S.K. Kataria & Sons, 2012 or<br>latest edition      |
| 7         | Electrical Technology<br>Vol-2              | Theraja, B. L.          | S. Chand & Co. Ltd., 2011<br>or latest edition      |
| 8         | Applied electronics                         | R S Sedha               | (S Chand & Company)                                 |
| 9         | Electronic Devices and<br>Circuit Theory    | Boylestad Robert        | Pearson, 2007 or latest                             |
| 10        | Electronic devices and<br>Circuits          | Millman Halkias         | MGH New Delhi latest<br>edition                     |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

For Electrical

- 1. Ammeter (0-5A)
- 2. Voltmeter (0-150/300)
- 3. Millimeter
- 4. Rheostats (0-50/90/250/350 ohm)

#### For Electronics:

- 1. Function Generator
- 2. Multimeter
- 3. D.C. Power Supply
- 4. Variac
- 5. Cathode Ray Oscilloscope
- 6. Digital Storage Oscilloscope

#### **12. LEARNING WEBSITE & SOFTWARE**

- i. www.allaboutcircuits.com/vol\_1/chpt\_ml
- ii. <u>http://openbookproject.net/electricCircml</u>
- iii. <u>www.kpsec.freeuk.com</u>
- iv. www.howstuffwork/
- v. <u>www.nptel/electrical.com</u>

#### For Electronics:

- i. www.nptel.iitm.ac.in
- ii. www.youtube.com. (lectures on Basic electronics)
- iii. www.howstuffworks.com
- iv. www.alldatasheet.com
- v. Electronics Work bench

#### 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| SNo | Course Outcome                                                                |   |   |   |   | PO | Os |   |   |   |    | PSOs | 5  |
|-----|-------------------------------------------------------------------------------|---|---|---|---|----|----|---|---|---|----|------|----|
|     |                                                                               | 1 | 2 | 3 | 4 | 5  | 6  | 7 | 8 | 9 | 10 | 01   | 02 |
| 1   | Identify AC and DC supply                                                     | 2 | - | - | 1 | 2  | -  | 1 | - | - | 1  | -    | -  |
| 2   | Apply Faraday's law,<br>Lenz's law, Fleming's<br>right hand rule              | 3 | 2 | 2 | 1 | -  | -  | - | - | 1 | 3  | 2    | -  |
| 3   | Select a motor for a given application.                                       | 1 | 1 | - | - | 2  | -  | 2 | - | 2 | 3  | -    | -  |
| 4   | Identify and test<br>different electronic<br>components                       | 1 | 2 | 2 | 2 | 2  | -  | - | 2 | 2 | 3  | 2    | 1  |
| 5   | Use principles of<br>electronic circuit<br>operations and its<br>applications | 2 | 2 | 2 | 3 | 1  | -  | 2 | 1 | - | 2  | -    | 2  |
| 6   | Compare working of<br>different types of power<br>supplies                    | - | 1 | - | - | 2  | -  | - | - | - | 1  | -    | -  |

#### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 A. A. Ghate Lecturer in Electrical Engineering, G.P. Aurangabad
- 2 A.D. Dabhade Lecturer in Electronics Engineering, G.P. Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEINDUSTRIAL FLUID POWERCOURSE CODE6M402

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical Engineering                            | Fourth                    |

#### 1. RATIONALE

Oil Hydraulic systems & pneumatic systems are widely used in all fields of engineering as clean source of motive power. Low cost automation systems with the use of pneumatics have become popular as manufacturing aids. Diploma engineers come across such systems in all segments of industries. Hence the subject will give the students basic skills and knowledge, which will be directly needed in the industrial environment.

#### 2. COMPETENCY

The course content should be taught and implemented with the aim to develop different types of skills so that students are able to acquire following competency:

"Analyze and develop different components of Hydraulics and Pneumatics systems for different applications"

#### 3. TEACHING AND EXAMNATION SCHEME

| т  | Teaching Scheme |            | Total              | Examination Scheme (Marks) |    |             |            |       |      |       |
|----|-----------------|------------|--------------------|----------------------------|----|-------------|------------|-------|------|-------|
|    | (Hours/ C       |            | Credits<br>(L+T+P) | Theory                     |    | Theory      |            | Pract | ical | Total |
| L  | Т               | Р          | С                  | ESE                        | РТ | ESE<br>(PR) | PA<br>(TW) |       |      |       |
| 3  |                 | 2          | 5                  | 80                         | 20 |             | 25         | 125   |      |       |
| Du | ration of       | the Examin | ation (Hrs)        | 3                          | 1  |             |            |       |      |       |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; PR- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Know basic concepts of oil hydraulic systems.
- 2. Understand the various components of hydraulic system.
- 3. Develop the various hydraulic circuits for different applications
- 4. Know basic concepts of pneumatic systems.
- 5. Understand the various components of pneumatic system.
- 6. Develop the various pneumatic circuits for different applications
- 7. Develop PLC based simple Pneumatic and Hydraulic circuits

#### 5. DETAILED COURSE CONTENTS

| Unit                                   | Major Learning Outcomes                                                          | Topics And Sub-Topics                                                                                                                |
|----------------------------------------|----------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
|                                        | (Cognitive Domain Only)                                                          |                                                                                                                                      |
| Unit –I                                | 1a. Relate physical characteristics and                                          | 1.1 Applications of fluid power, General layout of oil hydraulic& pneumatic                                                          |
| Basics of Hydraulics<br>and pneumatics | functions of hydraulic oils                                                      | system.                                                                                                                              |
| and pheumatics                         | for specific conditions.<br>1b. Select relevant fluid for<br>given hydraulic and | 1.2 Merits and limitations of oil hydraulic,<br>comparison of hydraulic & pneumatic<br>system.                                       |
|                                        | Pneumatic Systems.<br>1c. Use hydraulic and<br>pneumatic system                  | <ul><li>1.3 Types of Hydraulic fluids, Properties of fluids, Selection of fluids and effect of temperature &amp; Pressure.</li></ul> |
|                                        | components symbols for making circuits.                                          | 1.4 Air treatment, Humidity, Drying,<br>Condensations of compressed air,<br>Pressure drop in Pneumatic lines.                        |
|                                        |                                                                                  | 1.5 ISO Symbols used in hydraulic & pneumatic system.                                                                                |

| 6M402                                               | GPA                                                                                                                                                                                                                                                                                                                                                          | Industrial Fluid Power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6M402<br>Unit– II<br>Hydraulic system<br>components | <ul> <li>2a. Illustrate the construction<br/>and working of various<br/>valves, positive<br/>displacement pumps.</li> <li>2b. Select relevant components<br/>for hydraulic systems.</li> <li>2c. Identify material and<br/>functions of accessories<br/>used in hydraulic system.</li> <li>2d. Demonstrate various<br/>components and accessories</li> </ul> | <ul> <li>2.1 Pumps: Classification, Construction, working principle and applications of Vane pump, gear pump, gerotor pump, screw pump, piston Pump. Factors Selection of Positive displacement Pumps.</li> <li>2.2 Pressure control Valves :- Construction, principle of working of pressure relief valve - direct, pilot operated, pressure reducing, pressure unloading, Sequence valves, counter balancing valve.</li> <li>2.3 Direction control valves: - Poppet valve, spool valve, 2/2, 3/2, 4/2, methods of actuation. Types of different center</li> </ul> |
|                                                     |                                                                                                                                                                                                                                                                                                                                                              | <ul> <li>positions. Check valves, pilot operated check valves.</li> <li>2.4 Flow control valves:- pressure compensated, non pressure compensated flow control valve,</li> <li>2.5 Actuators:-Classification, Construction, working of rotary Actuators - Hydraulic motors, Linear Actuators - Cylinders - single acting, double acting.</li> <li>2.6 Accessories: - Types, Material and functions of Pipes, filters, Hoses, Fittings, Seals and gaskets, Accumulators.</li> </ul>                                                                                   |
| Unit- III<br>Pneumatic System<br>components         | <ul> <li>3a. Identify material, components and accessories used in a given Pneumatic system.</li> <li>3b. Select air compressor for a given application.</li> <li>3c. Select relevant components</li> </ul>                                                                                                                                                  | <ul> <li>3.3 Pressure Control Valves Flow Control valves, Direction Control Valves.</li> <li>3.4 Actuators –</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                     | for pneumatic system.                                                                                                                                                                                                                                                                                                                                        | <ul> <li>construction, working principle</li> <li>3.6 Linear- Cylinders- Types, construction &amp; working principle</li> <li>3.7 Accessories – Pipes, Hoses, Fittings (Types, construction, working principle and symbols of all components), FRL</li> </ul>                                                                                                                                                                                                                                                                                                       |

|                                         |                                                                                                                                                                                                                                                  | unit                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit– IV<br>Basic Hydraulic<br>Circuits | <ul> <li>4a. Interpret a given circuit.</li> <li>4b. Construct hydraulic circuit<br/>for a given applications.</li> <li>4c. Diagnose faults in a given<br/>hydraulic circuit.</li> <li>4d. Troubleshoot a given<br/>hydraulic system.</li> </ul> | <ul> <li>unit</li> <li>4.1 Speed control circuits- Meter in, Meter out, Bleed off,</li> <li>4.2 Unloading, synchronizing, regenerative, counterbalance, dual pump unloading circuits.</li> <li>4.3 Hydraulic circuit for milling machine and shaping machine.</li> <li>4.4 Causes and Troubleshooting procedures of various hydraulic circuit components.</li> </ul>            |
| Unit– V<br>Basic Pneumatic<br>Circuits  | <ul> <li>5a. Interpret a given circuit.</li> <li>5b. Construct pneumatic circuit for a given applications.</li> <li>5c. Diagnose faults in a given pneumatic circuit.</li> <li>5d. Troubleshoot a given pneumatic system.</li> </ul>             | <ul> <li>5.1 Speed control circuits for double acting cylinder and bidirectional air motor. Sequencing circuits.</li> <li>5.2 Stroke control circuit, intermediate stopping of piston, dual control circuit.</li> <li>5.3 Time delay circuit and use of vacuum handling.</li> <li>5.4 Causes and Troubleshooting procedures of various pneumatic circuit components.</li> </ul> |
| Unit - VI<br>Fundamentals of<br>PLC     | <ul> <li>6a. Illustrate the working of PLC</li> <li>6b. Identify the various components of PLC</li> <li>6c. Developing ladder diagram for hydraulic and pneumatic circuits.</li> </ul>                                                           | <ul> <li>6.1 Introduction to PLC, advantages, disadvantages, applications</li> <li>6.2 PLC architecture, various components, functions, PLC scan cycle</li> <li>6.3 Input and output devices, input and output module, timers and counters.</li> <li>6.4 Basics of Ladder programming, Developing Ladder diagram for simple hydraulic and pneumatic circuits</li> </ul>         |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                     |                   | Dist       | ribution O | of Theory N | Marks |
|------------|-------------------------------------|-------------------|------------|------------|-------------|-------|
| Unit<br>No | Title Of Unit                       | Teaching<br>Hours | R<br>level | U<br>Level | A<br>Level  | TOTAL |
| Ι          | Basics of Hydraulics and Pneumatics | 04                | 04         | 04         |             | 08    |
| II         | Hydraulic Systems Components        | 10                | 06         | 08         |             | 14    |
| III        | Pneumatic Systems Components        | 08                | 06         | 06         |             | 12    |
| IV         | Basic Hydraulic circuits            | 10                | 04         | 08         | 06          | 18    |
| V          | Basic Pneumatic circuits            | 08                | 04         | 04         | 06          | 14    |
| VI         | Fundamentals of PLC                 | 08                | 04         | 04         | 06          | 14    |
|            |                                     | 48                | 28         | 34         | 18          | 80    |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                  | Hours |
|------------|------|-----------------------------------------------------------------------------------------------------|-------|
| 1          | II   | Assemble and dismantle any one hydraulic pump and filter.                                           | 04    |
| 2          | II   | Assemble and dismantle any one pressure control valve and flow<br>Control valve                     | 02    |
| 3          | II   | Assemble and dismantle any one directional control valve and actuators                              | 02    |
| 4          | IV   | Develop a meter in and meter out hydraulic circuit for a given application                          | 04    |
| 5          | IV   | Develop a Sequencing circuit and regenerative circuit.                                              | 04    |
| 6          | III  | Assemble and dismantle any one type of air motor                                                    | 04    |
| 7          | V    | Develop a speed control circuit for a pneumatic motor.                                              | 02    |
| 8          | IV   | Troubleshoot faults in Hydraulics circuit/components and suggest suitable remedial measures for it. | 02    |
| 9          | V    | Troubleshoot faults in Pneumatic circuit/components and suggest                                     | 02    |

|    |    | suitable remedial measures for it.                                    |    |
|----|----|-----------------------------------------------------------------------|----|
| 10 | VI | Develop a ladder diagram for a simple hydraulic and pneumatic circuit | 06 |
|    |    | TOTAL                                                                 | 32 |

#### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- 1. Prepare journals based on practical's performed in laboratory.
- 2. Make a list of manufacturers of various components of hydraulic and pneumatic systems through internet search.
- 3. Visit any two industries using hydraulic and pneumatic systems and prepare a report.
- 4. List any five companies manufacturing PLC.
- 5. Visit the sites where PLC is used and make a report and write their industrial application.
- 6. Search online PPT's, PDF's, and videos on the various hydraulic and pneumatic applications.
- 7. Collect samples of different types of oils and filters along with the specifications.
- 8. Prepare charts for different hydraulic and pneumatic components.
- 9. Collect the information about the applications of fluid power systems from internet.
- 10. Visit and Study the construction and working of any one earth moving equipment.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Arrange visits to industries hydraulic press components and Low cost automation.
- b. Motivate students to use internet and collect names of manufacturing companies of oils and filters.
- c. Arrange expert lecture on various topics of PLC, low cost automation.
- d. Activity based learning.
- e. Q & A technique.

#### **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                                                             | Author                       | Publication                                 |
|-------|--------------------------------------------------------------------------|------------------------------|---------------------------------------------|
| 1     | Oil Hydraulic system-<br>Principles and<br>maintenance                   | Majumdar S. R.               | Tata McGraw Hill                            |
| 2     | Pneumatics Systems-<br>Principles and<br>maintenance                     | Majumdar S. R.               | Tata McGraw Hill<br>Publications,           |
| 3     | Hydraulic And Pneumatic<br>Power For Production<br>Industrial Hydraulics | Harry L. Stewart             | Industrial Press INC.                       |
| 4     | Industrial Hydraulic                                                     | Pippenger, John H.<br>Hicks, | Tata McGraw Hill<br>Publications, New Delhi |
| 5     | Hydraulics and pneumatics                                                | Andrew Parr                  | Jaico Publishing House                      |
| 6     | Pneumatics and<br>hydraulics                                             | Harry L Stewart              | D. B. Tarapoorwala and sons                 |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S.<br>No. | Name of equipment                                                                                                                                                                                                                                             | Brief specification                                                                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| 1.        | <ol> <li>Hydraulic Trainer kit</li> <li>Hydraulic Power Pack.</li> <li>Gear Pump: Discharge :</li> <li>Hydraulic cylinder.</li> <li>Single Acting : 1 No.</li> <li>Double Acting : 1 No.</li> <li>Valves:-</li> <li>Pressure Relief Valve : 1 No.,</li> </ol> | 10 LPM, 40 Kg/cm <sup>2</sup> , 1 HP motor<br>coupled to Gear pump<br>10 LPM. Pressure : upto 40 Kg/cm2<br>Bore 40 mm Stroke : 100 mm |

|    | Directional Control Valve : 1 No.,                                                                                                                           |                                                                                                         |  |  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|--|--|
|    | Non Return Valve: 1 No.,                                                                                                                                     |                                                                                                         |  |  |
|    | Sequencing Valve : 1 No.,                                                                                                                                    |                                                                                                         |  |  |
|    | Pressure Reducing Valve : 1 No.,                                                                                                                             |                                                                                                         |  |  |
|    | Flow Control Valve : 1 No.,                                                                                                                                  |                                                                                                         |  |  |
|    | Solenoid Valve : 1 No.                                                                                                                                       | 25 Microns                                                                                              |  |  |
|    | 5. Manifold : Multicoated block for drain connections.                                                                                                       | 45 Ltr Capacity                                                                                         |  |  |
|    | 6. Hydraulic Motor: Balanced Vane : 1 No.                                                                                                                    |                                                                                                         |  |  |
|    | 7. Pressure Gauges : 2 Nos.                                                                                                                                  |                                                                                                         |  |  |
|    | 8. Filter : 1 No.,                                                                                                                                           |                                                                                                         |  |  |
|    | 9. Oil Reservoir, Hydraulic Hoses provided with quick change couplings : 5 No.                                                                               |                                                                                                         |  |  |
|    | 10. All the valves & components are<br>mounted on the panel made from M.S.<br>sheet. The whole unit mounted on M.S.<br>frame for which castors are provided. |                                                                                                         |  |  |
|    | 2. Pneumatic Trainer Kit                                                                                                                                     | Displacement 3cfm, Working                                                                              |  |  |
|    | 1. Air compressor- 01 No.                                                                                                                                    | pressure – 7kg/cm2 (7 bar) with 0.5HP 650RPM electric motor 230V,                                       |  |  |
|    | 2. Filter Regulator and Lubricator (FRL)<br>unit with Pressure gauge (10bar) – 1 No.                                                                         | 50Hz, 1 phase with 0-10 bar pressure<br>gauge & shut off valve with suitable<br>hose and end connector. |  |  |
| 2. | <ul> <li>3. Direction control valves of different configuration (3/2 way, 5/2 way, 2/2 way &amp; 5/3 way) and different actuations (manual /</li> </ul>      | The port size of the valves shall be of $\frac{1}{4}$ " BSP.                                            |  |  |
|    | solenoid operated) of sufficient quantity to execute the experiments.                                                                                        | The port size of the valves shall be of $\frac{1}{4}$ " BSP.                                            |  |  |
|    | 4. Set of Pressure control Valves, One way valves, Flow control valves, shut off valves, OR gate & AND gate shuttle Valves, etc.                             | Bore 25mm, Stroke 100mm with suitable mounting arrangement                                              |  |  |
|    |                                                                                                                                                              | - Bore 25mm, Stroke 100mm with                                                                          |  |  |

|   | 5. Single acting cylinder minimum 1No.                                                                                                                                                                                                                                                                                                                                                                    | suitable mounting arrangement -                                                                                                                                                                                                                                                                                                                                              |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | 6. Double acting cylinder minimum 1 No                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                              |
|   | 7. Required length and quantity of<br>pneumatic hoses with suitable end fittings<br>of quick snap type and Ell, Straight & Tee<br>fittings of required quantity to be provided.<br>50% extra spares of this hoses and fittings<br>to be supplied.                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                              |
|   | 8. Hand Tools required for carrying out the experiment $-2$ sets to be supplied.                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |
|   | 9. Required electrical controls with sockets for solenoids, etc.                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                              |
| 3 | <ul> <li>PLC Trainer Kit:</li> <li>1. PLC-Make:- SIEMENS LOGO /<br/>ALLEN BRADLEY MICRO 810 / STD.<br/>EQUIVALENT</li> <li>2. Ladder Programming Software Logosoft<br/>/ CCW (Connected Components<br/>Workbench)</li> <li>3. Power Supply-</li> <li>4. 2080-USB ADAPTER-</li> <li>5. 2080-LCD- 1.5 LCD Display and<br/>Keypad, for Micro810 Only (Optional)</li> <li>6. PLC panel dimensions-</li> </ul> | Digital inputs- 8, Digital outputs- 4,<br>PC interface facility, PC-PLC<br>interfacing cable., Front panel for<br>display of digital input /output status:<br>Lamps (8 No.s), LED Indicators (4<br>No.s), Ladder diagram programming<br>on PC.<br>For Micro 810/ Standard Equivalent.<br>24VDC, 3A Power source.<br>4"X2"X2"<br>USB Adapter Plug for Micro810 12-<br>pt only |
|   | 7. Necessary Input / Output simulating devices.                                                                                                                                                                                                                                                                                                                                                           | 2 Ft. X 1Ft. X 2Ft. With visible transparent front fascia.                                                                                                                                                                                                                                                                                                                   |
|   | 8. Electrical control panel for simulation of digital inputs (consisting of Toggle Switches 8 no.& proximity sensor 1 No. )                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                              |
|   | 9. Output compatibility to Solenoid valves,<br>Electric motors as actuating elements in                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                              |

| respective assorted Modules.                                                                                            |  |
|-------------------------------------------------------------------------------------------------------------------------|--|
| 10. SCADA SOFTWARE connectivity for PLC (Optional).                                                                     |  |
| 11. High speed Frequency input (Optional).                                                                              |  |
| 12 Water level tank (Optional) with<br>Miniature Level Switches (2 No.s) and<br>solenoid drain valve (1 No.) (Optional) |  |

#### **12. LEARNING WEBSITE & SOFTWARE**

- a http://hydraulicspneumatics.com/fluid-power-basics/circuits
- b http://hydraulicspneumatics.com/other-technologies/chapter-5-pneumatic-and-hydraulicsystems
- c http://www.nitc.ac.in/dept/me/jagadeesha/mev303/Chapter2\_Hydraulics\_control\_in\_mac hine\_tools.pdf
- d http://nptel.ac.in/courses/112102011/4
- e https://www.faa.gov/regulations\_policies/handbooks\_manuals/aircraft/amt\_airframe\_han dbook/media/ama\_Ch12.pdf
- f http://constructionmanuals.tpub.com/14273/css/Chapter-3-Hydraulic-and-Pneumatic-Systems-95.htm
- g http://www.eaton.com/ecm/groups/public/@pub/@eaton/@hyd/documents/content/ct\_23 3701.pdf
- h http://www.machinerylubrication.com/Read/531/hydraulic-root-causes
- i http://hydraulicspneumatics.com/blog/think-first-then-troubleshoot-chapter-8-system-tests-piston-pumps
- j http://www.plantengineering.com/single-article/12-steps-to-troubleshooting-pneumatic-systems/fd1e7c3a4c54c64ac4e07a066be0ed1b.html
- k http://gpmhydraulic.com/basic-pneumatic-troubleshooting/
- 1 http://www.festo-didactic.com/us-en/training-and-consulting/catalog-of-trainingcourses/technology/pneumatics/pn121-maintenance-and-troubleshooting-of-pneumaticsystems.htm?fbid=dXMuZW4uNTc5LjE3LjI2LjI2NzM3LjM2NTM
- m http://nptel.ac.in/courses/112103174/pdf/mod6.pdf
  (Guidelines for searching the material from internet)
- 1. Prepare journals based on practical's performed in laboratory.
- 2. Make a list of manufacturers of various components of hydraulic and pneumatic systems through internet search.

- 3. Visit any two industries using hydraulic and pneumatic systems and prepare a report.
- 4. List any five companies manufacturing PLC.
- 5. Visit the sites where PLC is used and make a report and write their industrial application.
- 6. Search online PPT's, PDF's, video's on the various hydraulic and pneumatic applications.
- 7. Develop pneumatic and Hydraulic circuits using Automation Studio & Festo
- 8. Collect samples of different types of oils and filters along with the specifications.
- 9. Prepare charts for different hydraulic and pneumatic components.
- 10. Collect the information about the applications of fluid power systems from internet.
- 11. Visit and Study the construction and working of any one earth moving equipment

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| SNo | Course Outcome                                                          |   | POs |   |   |   |   | PSOs |   |   |    |    |    |
|-----|-------------------------------------------------------------------------|---|-----|---|---|---|---|------|---|---|----|----|----|
|     |                                                                         | 1 | 2   | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 01 | 02 |
| 1   | Know basic concepts<br>of oil hydraulic<br>systems                      | 1 | 2   | - | - | - | - | -    | 1 | - | -  | -  | 2  |
| 2   | Understand the<br>various components<br>of hydraulic system.            | 1 | 2   | 2 | - | - | - | -    | 1 | - | -  | -  | 2  |
| 3   | Develop the various<br>hydraulic circuits for<br>different applications | 1 | 2   | 3 | 3 | - | 1 | -    | 2 | 2 | -  | -  | 2  |
| 4   | Know basic concepts<br>of pneumatic systems                             | 1 | 2   | - | - | - | - | -    | 1 | 0 | -  | -  | 2  |
| 5   | Understand the<br>various components<br>of pneumatic system             | 1 | 2   | 2 | - | - | - | -    | 1 | 0 | -  | -  | 2  |
| 6   | Develop the various<br>pneumatic circuits for<br>different applications | 1 | 2   | 3 | 3 | - | 1 | -    | 2 | 2 | -  | -  | 2  |
| 7.  | Develop PLC based<br>simple Pneumatic and<br>Hydraulic circuits         | 1 | 2   | 3 | 3 | - | 2 | -    | 3 | 2 | 2  | -  | 2  |

# **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                                       |
|----------|-----------------------------|---------------------------------------------------------------------------------|
| 1        | Dr.U.V.Pise                 | Head of the Mechanical Engineering Department, Govt.<br>Polytechnic, Aurangabad |
| 2        | S.B.Kulkarni                | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad               |
| 3        | A. W,Nemade                 | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad               |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLE COURSE CODE

### **COMPUTER AIDED DRAFTING**

6M208

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fourth                    |

#### 1. RATIONALE

The market driven economy demands frequent changes in product design to suit the customer's needs. With the introduction of computers the task of modeling any complex part and incorporating frequent changes as per customer requirement are becoming simpler. Moreover, the technology driven competitive environment in today's market is compelling design/consulting engineering firms and manufacturing companies to seek CAD conversion of their existing paper based engineering documents. The focus of this course is to provide the student with hands-on experience in drafting and editing of an industrial production drawing and making them competent in latest solid modeling and assembly practices.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Prepare digital drawings and 3D models using Computer aided drafting and Modeling software".

| Т  | eaching   | Scheme     | Scheme Total       |                  | Examination Scheme (Marks) |       |      |    |  |
|----|-----------|------------|--------------------|------------------|----------------------------|-------|------|----|--|
|    | Hours/ C  |            | Credits<br>(L+T+P) | Theory Practical |                            | Total |      |    |  |
| T  | т         | Р          | С                  | ESE              | PT                         | ESE   | PA   |    |  |
| L  | 1         | 1          | C                  | LDL              | 11                         | (PR)  | (TW) | 50 |  |
| 1  | -         | 2          | 3                  |                  |                            | 25@   | 25   | 50 |  |
| Du | ration of | the Examin | ation (Hrs)        |                  |                            | 02    |      |    |  |

### 3. TEACHING AND EXAMNATION SCHEME

**Legends : L-**Lecture; **T-**Tutorial/Teacher Guided Theory Practice ; **P-** Practical; **C-** Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Use the CAD workspace and interface.
- 2. Draw 2D drawing entities using computer aided drawing software.
- 3. Develop solid models from 2D entities using Part workbench tools of parametric solid modeling software.
- 4. Assemble various parts using Assembly workbench tools of parametric solid modeling software.
- 5. Generate various orthographic views of parts and assemblies using Drafting-detailing workbench of parametric solid modeling software.

| Unit            | Major Learning Outcomes                 | Topics and Sub-topics                                               |
|-----------------|-----------------------------------------|---------------------------------------------------------------------|
|                 | (in cognitive domain)                   |                                                                     |
| Unit – I        | 1a. Explain use of computer in          | 1.1 Fundamentals of Computer Aided                                  |
|                 | drafting and designing.                 | Drafting (CAD) and its applications,                                |
| Fundamentals of |                                         | Various Software for Computer Aided                                 |
| CAD Drawing     | interface.                              | Drafting.                                                           |
| Setup           | 1c. Work with the User                  | 1.2 Co-ordinate System- Cartesian and                               |
|                 | Coordinate System and                   | Polar Absolute, Relative mode, UCS,                                 |
|                 | World Coordinate System.                | WCS.                                                                |
|                 | 1d. Apply different object              | 1.3 CAD initial setting commands- Snap,                             |
|                 | selection methods in a given situation. | grid, Ortho, Osnap, Limits, Units,<br>Ltscale, Object tracking etc; |
|                 | 1e. Open, save and close new and        | 1.4 Object Selection methods- picking,                              |
|                 | given drawings/ templates.              | window, crossing, fence, last and                                   |
|                 | Biven drawings, templates.              | previous.                                                           |
|                 |                                         | 1.5 Opening, saving and closing a new                               |
|                 |                                         | and existing drawing/template.                                      |
| Unit– II        | 2a. Use viewing commands.               | 2.1 Zoom Commands – all, previous, out,                             |
|                 | 2b. Apply formatting                    | in, extent, Realtime, dynamic, window,                              |
| Draw and        | commands.                               | pan.                                                                |
| Modify          | 2c. Draw simple 2D entities             | •                                                                   |
| Commands        | using given draw                        | lineweight, color.                                                  |
|                 | commands.                               | 2.3 Draw Command - Line, arc, circle,                               |
|                 | 2d. Create given complex 2D             | rectangle, polygon, ellipse, spline,                                |
|                 | entity using modify                     | block, hatch.                                                       |
|                 | commands.                               | 2.4 Modify Command - Erase, trim,                                   |
|                 | 2e. Use grip command to                 | extend, copy, move, mirror, offset,                                 |
|                 | manipulate given 2D entity.             | fillet, chamfer, array, rotate, scale,                              |
|                 |                                         | lengthen, stretch, break, divide,                                   |

#### 5. DETAILED COURSE CONTENTS

|               |                                                                 | 1 1 1'                                                                   |
|---------------|-----------------------------------------------------------------|--------------------------------------------------------------------------|
|               |                                                                 | explode, align.                                                          |
|               | 20 Dimension siven 2D entities                                  | 2.5 Grips editing- Move, Copy, Stretch.                                  |
| Unit– III     | 3a. Dimension given 2D entities<br>using different dimensioning | 3.1 Dimensioning commands - Dimension styles, Dimensional Tolerances and |
| Dimensioning, | styles                                                          | geometrical Tolerances, Modify                                           |
| Text and Plot | 3b. Apply Geometric and                                         | dimension style.                                                         |
|               | dimension tolerance symbols                                     | 3.2 Text commands - dtext, mtext                                         |
| Commands      | on the given entity.                                            | command.                                                                 |
|               | 3c. Write text on given 2D entity.                              | 3.3 Plotting a drawing - paper space,                                    |
|               | 3d. Plot given 2D entities using                                | model space, creating table, plot                                        |
|               | proper plotting parameters.                                     | commands.                                                                |
| Unit– IV      | 4a. Use draw commands in                                        | 4.1 Introduction, Applications, Different                                |
|               | sketcher mode.                                                  | Software packages used for Solid                                         |
| Working in    |                                                                 | Modeling.                                                                |
| 2D            | 4b. Apply dimensioning                                          | 4.2 Working in Sketcher mode – Line,                                     |
| environment   | constraints to given sketch.                                    | Profile, Circle, Arc, curves, Rectangle and                              |
|               |                                                                 | their sub options.                                                       |
|               | 4c. Apply geometrical constraints                               | 4.3Constraints - Dimensioning constraint,                                |
|               | to given sketch.                                                | Geometrical constraint.                                                  |
|               |                                                                 |                                                                          |
| Unit- V       | 5a. Create 3D simple model using                                | 5.1 Working in 3D environment -                                          |
| Dout Madalina | Extrude and Revolve                                             | Creating 3D Solid Models of simple                                       |
| Part Modeling | commands.                                                       | machine parts.                                                           |
|               | 5b. Create 3D complex model                                     | 5.2 3D Commands – Extrude, Revolve,                                      |
|               | using Extrude, Revolve                                          | Sweep, Pattern, Draft, loft and Blend. or similar commands.              |
|               | Sweep, Pattern, Draft and                                       | 5.3 Intersection of solids – Intersect two                               |
|               | Blend commands.                                                 | solid components by inserting new body                                   |
|               | 5c.Use 3D modify commands.                                      | option.                                                                  |
| Unit– VI      | 6a. Prepare assembly of given                                   | 6.1 Assembly Drawing – Introduction to                                   |
|               | 1                                                               | Top down and Bottom up approach of                                       |
| Assembly,     | parts.                                                          | assembly. Preparation of Assembly                                        |
| Drafting &    | 6b. Create exploded view of the                                 | drawing by using assembly features.                                      |
| Plotting      | assembly.                                                       | (Assembly of minimum 4-5                                                 |
| Tiotting      | assembry.                                                       | components)                                                              |
|               | 6c. Generate 2D drawings of part                                | 6.2 Exploded view – Explode the                                          |
|               | models and assembly.                                            | assembly.                                                                |
|               |                                                                 | 6.3 Working in Drafting Mode                                             |
|               | 6d. Plot the drawing.                                           | Generate orthographic projections.                                       |
|               |                                                                 | This will include all types of views -                                   |
|               |                                                                 | front view, top view, side view,                                         |
|               |                                                                 | sectional views, isometric views,                                        |
|               |                                                                 | auxiliary views.                                                         |
|               |                                                                 |                                                                          |
|               |                                                                 | 6.4 Dimensioning Commands – Apply                                        |

| dimensions, dimensional and                    |
|------------------------------------------------|
| geometrical tolerances.                        |
| 6.5 Bill of material – Prepare part list table |
| and name plate.                                |
| 6.6 Page set up, Plot command.                 |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER (INTERNAL) DESIGN

| Unit<br>No. | Unit Title                              | Teaching<br>Hours | Distribution of Theory Marks |       |       |       |
|-------------|-----------------------------------------|-------------------|------------------------------|-------|-------|-------|
| 110.        |                                         | 110015            | R                            | U     | Α     | Total |
|             |                                         |                   | Level                        | Level | Level | Marks |
| Ι           | Fundamentals of CAD Drawing Setup       | 02                | -                            | 01    | 01    | 02    |
| II          | Draw and Modify Commands                | 03                | -                            | 01    | 02    | 03    |
| III         | Dimensioning, Text and Plot<br>Commands | 03                | -                            | 02    | 02    | 04    |
| IV          | Working in 2D environment               | 02                | -                            | 02    | 03    | 05    |
| V           | Part Modeling                           | 03                | -                            | 02    | 03    | 05    |
| VI          | Assembly, Drafting & Plotting           | 03                | -                            | 02    | 04    | 06    |
|             | Total                                   | 16                | -                            | 10    | 15    | 25    |

*Legends:* R=Remember, U=Understand, A=Apply and above (Bloom's Revised taxonomy)

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Practical Exercises<br>(Learning Outcomes in Psychomotor Domain)                                             | Unit<br>No. | Approx.<br>Hrs.<br>Required |
|------------|--------------------------------------------------------------------------------------------------------------|-------------|-----------------------------|
| 1.         | Customize main window and interface of the Computer Aided<br>Drafting software using customization tool bar. | Ι           | 02                          |
| 2.         | Prepare a template of your institute.                                                                        | I, II       | 02                          |
| 3.         | Draw 2D entities (any two) individually and modify them using                                                | I, II       | 02                          |

|     | draw and edit commands.                                                                                                                                 |         |    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------|----|
| 4.  | Draw different views of object like Hexagonal nut and Bolt<br>(similar objects can be taken up) using Computer Aided Drafting<br>software.              | II, III | 02 |
| 5.  | Draw different views of object like flange coupling, universal<br>coupling (similar objects can be taken up) using Computer Aided<br>Drafting software. | II, III | 04 |
| 6.  | Make blocks of Hexagonal nut and bolt, Ball bearing and insert<br>them in same or other files (similar objects can be taken up).                        | II, III | 04 |
| 7.  | Customize main window and interface of the 3D modeling software using customization tool bar.                                                           | IV      | 02 |
| 8.  | Draw 2D simple sketch using various draw commands. (Any two) and Apply geometrical and dimensional constraints to the sketch                            | IV      | 02 |
| 9.  | Draw 2D complex sketch using various draw, edit, modify and dimension commands. (Any two)                                                               | IV      | 02 |
| 10. | Create simple part models using commands like Extrude,<br>Revolve, Mirror, Chamfer, Fillet, Rib, Pattern etc;                                           | V       | 02 |
| 11. | Develop simple part models of Cotter joint or flange coupling.                                                                                          | V       | 02 |
| 12. | Create a simple part using commands like Sweep, Blend, Draft<br>and loft or similar commands.                                                           | V       | 02 |
| 13. | Generate orthographic views of prepared solid model Assembly.<br>Prepare Bill of materials.                                                             | VI      | 04 |
|     | Total                                                                                                                                                   |         | 32 |

### 8. SUGGESTED STUDENTS ACTIVITIES

Other than the classroom and laboratory learning, following are the suggested student-related *co-curricular* activities which can be undertaken to accelerate the attainment of the various outcomes in this course:

a. Maintain a separate folder on Computer workstation allotted, in which all above mentioned practical should be saved and will be submitted/ mailed as a part of term work.

- b. Collect at least one 2D/3D drawing like Production drawings, Layouts from nearby workshops/industries and develop them using computer aided drafting approach.
- c. Students will explain at least one problem for drafting to all batch colleagues. Teacher will assign the problem to the students.
- d. Assess at least one 2D/3D drawing of other students (A group of 5-6 students may be identified by teacher) and note down the mistakes committed by the group. Selected students will also guide other students for correcting mistakes, if any.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Massive open online courses (*MOOCs*) may be used to teach various topics/sub topics.
- b. With respect to item No.08, teachers need to ensure to create opportunities and provisions for *co-curricular activities*.
- c. Guide student(s) in undertaking micro-projects.
- d. No. of practical's selection to be performed should cover all units.

#### **10. SUGGESTED LEARNING RESOURCE**

| Sr. | Title of Book                                                         | Author                                            | Publication                                                                |
|-----|-----------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------|
| No. |                                                                       |                                                   |                                                                            |
| 1.  | Engineering Drawing<br>Practice for Schools and<br>Colleges IS: SP-46 | Bureau of Indian<br>Standards                     | BIS, GOI, Third Reprint, October 1998,<br>ISBN: 81-7061-091-2              |
| 2.  | Engineering Drawing                                                   | Bhatt, N.D.                                       | Charotar Publishing House, Anand,<br>Gujarat, 2010, ISBN:978-93-80358-17-8 |
| 3.  | Machine Drawing                                                       | Bhatt, N.D.;<br>Panchal, V. M.                    | Charotar Publishing House, Anand,<br>Gujarat, 2010, ISBN:978-93-80358-11-6 |
| 4.  | Engineering Graphics<br>with AutoCAD                                  | Kulkarni D. M.;<br>Rastogi A. P.;<br>Sarkar A. K. | PHI Learning, New Delhi (2010),<br>ISBN: 978-8120337831                    |

| 5. | Essentials of           | Jeyapoovan T. | Vikas Publishing House Pvt. Ltd, Noida, |
|----|-------------------------|---------------|-----------------------------------------|
|    | Engineering Drawing     |               | 2011, ISBN: 978-8125953005              |
|    | and Graphics using      |               |                                         |
|    | AutoCAD                 |               |                                         |
| 6. | AutoCAD User Guide      | Autodesk      | Autodesk Press, USA, 2015               |
| 7. | AutoCAD 2016 for        | Tickoo Sham.  | Dreamtech Press; Galgotia Publication   |
|    | Engineers and Designers |               | New Delhi, Twenty Second edition, 2015, |
|    |                         |               | ISBN-13: 978-9351199113                 |
|    |                         |               |                                         |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr. | Equipment/Instruments/Other resources name with Broad                                                      | Exp. |
|-----|------------------------------------------------------------------------------------------------------------|------|
| No. | Specifications                                                                                             | No.  |
| 1   | Networked Licensed latest version of any Parametric Computer Aided<br>Drafting and Designing software.     | All  |
| 2   | CAD workstation with latest configurations (i3-i5 preferable), RAM minimum 4 GB onwards, for each student. | All  |
| 3   | Operating system: Windows XP/Windows 7/ Windows 8/Windows 10 onwards.                                      | All  |
| 4   | Plotter/Printer with latest versions. (A3 and A4)                                                          | All  |
| 5   | LCD projector and Screen/ Interactive board.                                                               | All  |

#### **12. LEARNING WEBSITE & SOFTWARE**

- a. http://www.mycadsite.com/tutorials/
- b. http://tutorial45.com/learn-autocad-basics-in-21-days/
- c. https://www.lynda.com/AutoCAD-training-tutorials/160-0.html
- d. http://www.investintech.com/resources/blog/archives/5947-free-online-autocad-tutorialscourses.html
- e. http://www.cad-training-course.com/
- f. http://www.solidworks.in/sw/products/3d-cad/3d-solid-modeling.htm
- g. http://web.iitd.ac.in/~hegde/cad/lecture/L30\_solidmod\_basics.pdf
- h. https://en.wikipedia.org/wiki/Solid\_modeling
- i. http://npkauto.com/solid-modeling/
- j. <u>https://www.youtube.com/watch?v=vjX4PDJcFOI</u>
- k. https://www.youtube.com/watch?v=5BDHS4FN2-
- 1. <u>https://www.youtube.com/watch?v=JjKs-lePlPY</u>

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

|                                                                                                                                                                      | Programme Outcomes |      |      |      |      |      |      |      |      |          |          |          |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|------|------|------|------|------|------|------|----------|----------|----------|
|                                                                                                                                                                      | PO 1               | PO 2 | PO 3 | PO 4 | PO 5 | PO 6 | PO 7 | PO 8 | PO 9 | PO<br>10 | PSO<br>1 | PSO<br>2 |
| COs                                                                                                                                                                  |                    |      |      |      |      |      |      |      |      |          |          |          |
| 1. Use the CAD<br>workspace and<br>interface.                                                                                                                        | -                  | 3    | 3    | 3    | 1    | -    | 1    | 3    | 2    | 2        | -        | 3        |
| 2. Draw 2D<br>drawing entities<br>using computer<br>aided drawing<br>software.                                                                                       | -                  | 3    | 3    | 2    | -    | -    | -    | 3    | 2    | 2        | -        | 2        |
| 3. Develop solid<br>models from 2D<br>entities using<br>Part workbench<br>tools of<br>parametric solid<br>modeling<br>software.                                      | -                  | 3    | 3    | 2    | -    | -    | -    | 3    | 2    | 2        | -        | 2        |
| 4. Assemble<br>various parts<br>using Assembly<br>workbench tools<br>of parametric<br>solid modeling<br>software.                                                    | 1                  | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 2    | 3        | 3        | 3        |
| 5. Generate various<br>orthographic<br>views of parts<br>and assemblies<br>using Drafting-<br>detailing<br>workbench of<br>parametric solid<br>modeling<br>software. | 1                  | 3    | 3    | 3    | 2    | 1    | 1    | 3    | 2    | 3        | 3        | 3        |

# **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                        |
|----------|-----------------------------|--------------------------------------------------|
| 1        | S.V.Borde                   | Lecturer in Mechanical Engg,Govt.Poly.Aurangabad |
| 2        | N.S.Khandagale              | Lecturer in Mechanical Engg,Govt.Poly.Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLE COURSE CODE

HEAT POWER ENGINEERING

6M404

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fifth                     |

#### 1. RATIONALE

I.C. Engines finds applications in almost all sectors of industry and in automobiles. Diploma technicians deal with working, testing and maintenance of I.C. Engines. Use of air compressors is increasing due to automation. There is large scope for energy saving in air compressors. Hence it is necessary to understand constructional features and thermodynamic aspect of air compressor. Gas turbine is used for power generation and for jet propulsion. Diploma engineer should understand the fundamentals of refrigeration and air- conditioning as there are many industrial applications and also many entrepreneual opportunities in this field.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"To describe construction & principle working of I.C Engine, Air Compressor, Gas turbine, Refrigeration system & application in various fields"

#### Examination Scheme (Marks) Total **Teaching Scheme** Credits (Hours/ Credits) Theory Practical Total (L+T+P)ESE PA Т Р С ESE PT L (OR) (TW) 150 3 2 5 80 20 25# 25 Duration of the Examination (Hrs) 03 01 ----

#### 3. TEACHING AND EXAMNATION SCHEME

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Understand power cycle & represent on P-V & T-S diagram.
- 2. Describe construction and working of I. C. Engines.
- 3. Understand working of gas turbines and its application.
- 4. Explain different types of air compressors and conduct trial on air Compressor.
- 5. Describe construction, working and application of vapor compression cycle.
- 6. Appreciate psychometric processes and air conditioning systems.

#### 5. DETAILED COURSE CONTENTS

| Unit                                                 | Major Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                                                                                  | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                      | (in cognitive domain)                                                                                                                                                                                                                                                                                                                                                                                                                                    | (Containing POs and PSOs assignment in each Sub-topic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit - I.<br>I.C. Engines and air<br>standard cycles | <ul> <li>1a. Draw and represent<br/>power cycles on P-V and<br/>T-S diagram</li> <li>1b. Calculate cycle<br/>efficiencies.</li> <li>1c. Classify I. C. Engines.</li> <li>1d. Explain construction and<br/>working of two strokes &amp;<br/>four Stroke engine.</li> </ul>                                                                                                                                                                                | <ul> <li>1.1 Theoretical Power cycles - Carnot,<br/>Otto, Diesel, Dual, Brayton cycle.<br/>Representation on P-V, T-S<br/>diagram. Simple numerical on Otto<br/>and diesel cycle only.</li> <li>1.2 Classification of I.C. Engines</li> <li>1.3 Two stroke and four stroke engines<br/>construction, working, comparison<br/>and valve timing diagram.</li> <li>1.4 Scavenging</li> </ul>                                                                                                                                                               |
| Unit - II                                            | 2a. Classify air compressors                                                                                                                                                                                                                                                                                                                                                                                                                             | 2.1 Introduction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Air Compressor                                       | <ul> <li>2b. Define compressors</li> <li>2b. Define compressor<br/>terminology.</li> <li>2c. Write uses of compressed<br/>air.</li> <li>2d. Explain construction and<br/>working of single &amp; two<br/>stage reciprocating<br/>compressor.</li> <li>2e. Calculate various<br/>efficiencies related with<br/>compressor.</li> <li>2f. Write the advantages of<br/>multistage.</li> <li>2g. Explain construction and<br/>working of different</li> </ul> | <ul> <li>Classification of air compressor</li> <li>Definitions Compression ratio,<br/>free air delivered, compressor<br/>capacity, swept volume.</li> <li>Uses of compressed air.</li> <li>2.2 Reciprocating air compressor</li> <li>Construction and working of single<br/>stage and two stage compressor</li> <li>Efficiency-volumetric, isothermal<br/>and mechanical without clearance<br/>volume</li> <li>Two-stage compressions, perfect<br/>and imperfect inter cooling ( simple<br/>numerical )</li> <li>Advantages of multi staging</li> </ul> |

|                     | rotary compressor.            | 2.3 - Rotary compressor                                |
|---------------------|-------------------------------|--------------------------------------------------------|
|                     | 2h. State Comparison and      | -Construction and working of screw,                    |
|                     | application of rotary &       | lobe, vane, centrifugal compressor.                    |
|                     | reciprocating compressor.     | (No numerical)                                         |
|                     | 2i. Explain methods of        | -Comparison and applications of                        |
|                     | energy saving in air          | reciprocating & rotary compressors                     |
|                     | compressor.                   | -Purification of air to remove oil,                    |
|                     | 1                             | moisture and dust                                      |
|                     |                               | 2.4- Methods of energy saving in air                   |
|                     |                               | compressor.                                            |
| Unit -III           | 3a. Give classification &     | 3.1 Classification and applications of                 |
|                     | application of gas turbine.   | gas turbine.                                           |
| Gas Turbine And     | 3b. Draw & Explain closed     | 3.2 Constant volume and constant                       |
|                     | -                             |                                                        |
| Jet Propulsion      | and open gas turbine.         | pressure gas turbine.                                  |
|                     | 3c. Write methods to improve  | -Closed and open cycle gas turbines                    |
|                     | thermal efficiency of gas     | and their comparison                                   |
|                     | turbine.                      | 3.3 Methods to improve thermal                         |
|                     | 3d. Draw & Explain turbo jet, | efficiency of gas turbine                              |
|                     | turbo prop, Ram jet and       | -Regeneration, inter cooling,                          |
|                     | pulse jet.                    | reheating using $T - S$ diagram                        |
|                     | 3e. Explain working of rocket | 3.4 Jet propulsion                                     |
|                     | propulsion.                   | - Principles of Turbo jet, Turboprop                   |
|                     |                               | & Ram jet engines                                      |
|                     |                               | 3.5 Rocket propulsion                                  |
|                     |                               | Solid propellants and liquid                           |
|                     |                               | propellants, component of liquid                       |
|                     |                               | propellants, rocket engines.                           |
| Unit -IV            | 4a. Write principles of       | 4.1 Introduction                                       |
|                     | refrigeration.                | Principles of Refrigeration, COP of                    |
| Refrigeration & Air | 4b. Draw & Explain vapour     | heat pump and Refrigerator, Tones                      |
| Conditioning        | compression refrigeration     | of Refrigeration, Air Refrigeration                    |
| conditioning        | cycle.                        | system working on Bell-Coleman                         |
|                     | 4c. Represent VCC on P-H      | cycle.                                                 |
|                     | &T-S diagram                  | 4.2 Vapour compression system                          |
|                     | 4d. Write & Explain           | Vapour compression Refrigeration                       |
|                     | applications of               | cycle, its components,                                 |
|                     | 11                            |                                                        |
|                     | refrigeration's i.e. water    | representation on P- H and T-S                         |
|                     | cooler, ice plant, cold       | diagram (simple numerical)                             |
|                     | storage                       | - Effect of superheating and sub                       |
|                     | 4e. Define properties of air. | cooling                                                |
|                     | 4f. Define & Explain          | Applications- Water cooler,                            |
|                     | Dalton's law of partial       | domestic refrigerator, Ice Plant and                   |
|                     | pressure.                     | cold storage.                                          |
|                     | -                             |                                                        |
|                     | 4g. Show Psychometric         |                                                        |
|                     | -                             | 4.3 Psychrometry<br>Properties of air, Dalton's law of |

|                        | conditioning systems.                                                                                                                                                                                            | partial pressure,<br>Psychometric chart and processes<br>(No numerical)<br>4.4 Air conditioning systems Definition<br>and classification of air conditioning<br>systems.                               |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit -V<br>POWER PLANT | <ul> <li>5a. Write the factors affecting site selection of power plant.</li> <li>5b. Draw &amp; Explain general layout of different power plant</li> <li>5c. Draw &amp; Explain MHD power generation.</li> </ul> | <ul> <li>5.1 Site selection</li> <li>5.2 General layout of thermal,<br/>hydraulic, diesel, gas turbine and solar<br/>power plant</li> <li>5.3 MHD power generation</li> <li>5.4 Fuel cells.</li> </ul> |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                           | Teaching<br>Hours | ]     | Distribu | tion of <b>T</b> | Theory Marks |
|------|--------------------------------------|-------------------|-------|----------|------------------|--------------|
| No.  |                                      | nours             | R     | U        | Α                | Total Marks  |
|      |                                      |                   | Level | Level    | Level            |              |
| Ι    | I.C. Engines and air standard cycles | 8                 | 02    | 06       | 06               | 14           |
| Π    | Air compressor                       | 12                | 04    | 08       | 08               | 20           |
| III  | Gas turbine and jet propulsion       | 10                | 04    | 08       | 06               | 18           |
| IV   | Refrigeration & air conditioning     | 12                | 04    | 08       | 06               | 18           |
| V    | Power plant                          | 6                 | 02    | 04       | 04               | 10           |
|      | Total                                | 48                | 16    | 34       | 30               | 80           |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| S.  | Unit | Practical Exercises                                             | Approx.  |
|-----|------|-----------------------------------------------------------------|----------|
| No. | No.  | (Outcomes in Psychomotor Domain)                                | Hrs.     |
|     |      |                                                                 | required |
| 1   | I    | Demonstration/observations of cam shaft operated suction and    | 04       |
|     |      | exhaust valve functioning to study valve timing diagram of      |          |
|     |      | single/ multi cylinder engine.                                  |          |
| 2   | II   | Conduct trial on two stage reciprocating air compressor to      | 04       |
|     |      | determine its volumetric efficiency and isothermal efficiency.  |          |
| 3   | III  | Literature survey on website –                                  | 04       |
|     |      | • http://library.think.quest.org                                |          |
|     |      | • http://www.grc.nasa.goe                                       |          |
|     |      | • To prepare a brief report on gas turbine and jet propulsion.  |          |
| 4   | Ι    | Conducting market survey for two wheeler and four wheeler and   | 06       |
|     |      | refrigerator/ air conditioner to collect data of specification, |          |
|     |      | models, price, etc.                                             |          |
| 5   | Ι    | Conduct trial on refrigeration test rig for calculation of COP. | 02       |
| 6   | IV   | Observation of working unit of split/ window air conditioner    | 02       |
|     |      | to study components layout, location and function.              |          |
| 7   | V    | Dismantling and assembly of hermetically sealed compressor.     | 04       |
| 8   | V    | Observations of roof mounted solar power plant w.r.t its        | 06       |
|     |      | component layout, function and net metering ( including         |          |
|     |      | electrical accessories)                                         |          |
|     |      | TOTAL                                                           | 32       |

#### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular students activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- a. Collect the technical information, leaflets, Brochures on various products given by teacher. (Here products like Engines used for two & four wheeler, Air compressor, Refrigerator, Power plant equipments, Ice plant, Cold Storage etc...)
- b. Solve numerical problems.
- c. Analyze the specifications, costs, quality and availability for various types of products.

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a) Motivate students to use internet and collect name, addresses, catalogues, rates, specifications of manufacturers of different machines like I.C Engine, gas Turbine, refrigerator and air conditioning systems.
- b) Use conventional black board method, models, cut sections, for teaching learning process.
- c) Arrange visit to industry like automobile, refrigeration, S.T. Work shop, power plants etc...
- d) Arrange expert lecture on power generation, jet propulsion.

#### **10. SUGGESTED LEARNING RESOURCE**

| Sr.No. | Title of Book                        | Author            | Publication             |
|--------|--------------------------------------|-------------------|-------------------------|
| 1      | Internal Combustion<br>Engineering   | Mathur and Sharma | DhanpatRai& sons        |
| 2      | A Textbook of Thermal<br>Engineering | R.S. Khurmi       | S. Chand and<br>Company |
| 3      | Heat Engines – Vol. I,II,III         | Patel             | Acharya Publication     |

|   |                                       | Karamchandani          |                     |
|---|---------------------------------------|------------------------|---------------------|
| 4 | Thermal Engineering                   | P.C. Ballany,          | Khanna Publisher    |
| 5 | Refrigeration and Air<br>Conditioning | Domkundwar<br>,Arora., | DhanpatRai and Sons |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.No. | Name of the Equipment                   | Specification        |
|--------|-----------------------------------------|----------------------|
| 1      | Four stroke four cylinder Petrol engine | As per specification |
| 2      | Four stroke four cylinder Diesel engine | As per specification |
| 3      | Air compressor                          | As per specification |
| 4      | Refrigeration test rig                  | As per specification |
| 5      | Window air conditioner                  | As per specification |
| 6      | Hermitically sealed compressor          | As per specification |

#### 12. LEARNING WEBSITE & SOFTWARE

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO.<br>NO. | Course Outcome                                                  | P<br>O<br>1 | P<br>O<br>2 | P<br>O<br>3 | P<br>O<br>4 | P<br>O<br>5 | Р<br>О<br>6 | P<br>O<br>7 | P<br>O<br>8 | PO<br>9 | PO<br>10 | PS<br>O1 | PS<br>O2 |
|------------|-----------------------------------------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|---------|----------|----------|----------|
| CO1        | Understand power cycle & represent on P-V & T-S diagram.        | 1           | -           | 2           | -           | -           | -           | -           | -           | 1       | 1        | 1        | -        |
| CO2        | Describe construction and working of I. C. Engines.             | 1           | 2           | 1           | 2           | 2           | 2           | -           | -           | 1       | 2        | 2        | 1        |
| CO3        | Understand working of gas turbines and its application.         | 1           | 2           | 2           |             | 2           | 2           | 1           | 1           | -       | 2        | -        | -        |
| CO4        | Explain different types of air compressors and conduct trial on | 2           | 2           | 3           | 3           | -           | 2           | -           | -           | 2       | 2        | 2        | -        |

6M404

|     | air Compressor.                                                            |   |   |   |   |   |   |   |   |   |   |   |   |
|-----|----------------------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| CO5 | Describe construction, working and application of vapor compression cycle. | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 1 | 2 | 2 | 2 | 3 |
| CO6 | Appreciate psychometric processes<br>and air conditioning systems.         | - | 2 | 3 | 2 | 2 | - | - | - | - | - | 2 | 2 |

# **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                         |
|----------|-----------------------------|-------------------------------------------------------------------|
| 1        | G.G Ghuge                   | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 2        | V.B Kumavat                 | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEDESIGN OF MACHINE ELEMENTSCOURSE CODE6M504

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fifth                     |

#### 1. RATIONALE

The course Design of Machine Elements makes the student to understand the process of load, forces, stress, strains and related parameters required to design engineering components. The design procedure and applications in engineering. The course introduces simple design of machine elements like joints, couplings, levers, springs, etc. The student will be supposed to maintain and sometimes modify the existing designs of machine parts and components as per the need. Fundamental knowledge of engineering mechanics, strength of materials, engineering materials, theory of machines and CAD is essential. Subject aims at developing analytical abilities to give solutions of engineering design problems.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"To select, assemble and design simple machine elements/parts for various applications and draw CAD drawing."

| Teaching Scheme Total             |    |                                   | Examination Scheme (Marks) |        |    |       |       |     |
|-----------------------------------|----|-----------------------------------|----------------------------|--------|----|-------|-------|-----|
|                                   | Ū. | ours/ Credits) Credits<br>(L+T+P) |                            | Theory |    | Pract | Total |     |
| L                                 | Т  | Р                                 | С                          | ESE    | РТ | ESE   | PA    |     |
|                                   |    |                                   | _                          |        |    | (OR)  | (TW)  | 150 |
| 4                                 | -  | 2                                 | 6                          | 80     | 20 | 25#   | 25    | 130 |
| Duration of the Examination (Hrs) |    | 4                                 | 1                          |        |    |       |       |     |

#### 3. TEACHING AND EXAMNATION SCHEME

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR**- Practical; C-Credits; **ESE**- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Calculate different dimensions of machine components on the basis of various modes of failure.
- 2. Use a standard designing procedure for different components used in engineering practices.
- 3. Select proper material for jobs in industrial design.
- 4. Use Design Data Book and Manufacturing catalogue.
- 5. Prepare part and assembly drawings on CAD software

#### **5.DETAILED COURSE CONTENTS**

| Unit            | Major Learning Outcomes        | Topics And Sub-Topics                        |
|-----------------|--------------------------------|----------------------------------------------|
|                 | (Cognitive Domain Only)        |                                              |
| Unit - I        | 1a. Describe Design process.   | 1.1 Definition of load, Stress, Strain,      |
| Fundamentals of | 1b. Explanation of stress,     | Design Considerations.                       |
| mechanics.      | strain.                        | 1.2 Significance of Stress – Strain          |
|                 | 1c. Describe different         | diagram for various materials.               |
|                 | engineering materials and      | 1.3 Study of mechanical properties of        |
|                 | its properties.                | materials.                                   |
|                 | 1d. Describe limiting stresses | 1.4 Types of failure, fatigue, endurance     |
|                 | and factor of safety           | limit, Types of induced stresses.            |
|                 |                                | 1.5 Working stress and Factor of safety.     |
| Unit - II       | 2a. Describestress             | 2.1 1Stress concentration, meaning, causes   |
| Design          | concentration.                 | and remedies.                                |
| Considerations  | 2b. Describe Theories of       | 2.2 Principal Stresses. Theories of failure, |
|                 | failure.                       | Maximum principal stress theory and          |
|                 | 2c. Describe the principle     | Maximum shear stress theory.                 |
|                 | stresses Selection of          | 2.3 Selection of proper materials and        |
|                 | materials and                  | manufacturing processes.                     |
|                 | manufacturing processes.       | 2.4 Commercial designations of materials     |
|                 | 2d. Use Commercial             | and Specifications,                          |
|                 | designations for               | 2.5 Use of Design Data Book.                 |
|                 | engineering materials.         |                                              |
|                 | 2e. Use Design Data Hand       |                                              |
|                 | Book                           |                                              |

5.

| Unit - III        | 3a. Describe principle in      | 3.1 Design of machine parts subjected to                      |
|-------------------|--------------------------------|---------------------------------------------------------------|
| Force             | Designing of machine parts     | direct load such as                                           |
| Considerations    | subjected to direct load.      | 3.2 Knuckle joint, socket and spigot cotter                   |
| Constactations    | 3b. Describe Design of various | joint (Single); turn buckle etc.                              |
|                   | joints used in engineering.    | 3.3 Design of machine parts subjected to                      |
|                   | 3c. Use the concept of         | bending such as levers, bell crank                            |
|                   | bending, torque in design      | lever, lever loaded safety valve,                             |
|                   | of levers and different        | bearing cap.                                                  |
|                   | joints for identification of   | 3.4 Design of machine parts subjected to                      |
|                   | areas of failure.              | direct and bending stress such as C –                         |
|                   |                                | clamp, Hacksaw frames, and offset                             |
|                   |                                | links and wall brackets.                                      |
| Unit - IV         | 4a. Describe Design of shaft   | 4.1 Design of shaft on the basis of rigidity                  |
| Shaft, Keys and   | 4b. Describe the important     | and stiffness.                                                |
| Couplings         | various parameters of          | 4.2 Design of shaft subjected to combined                     |
|                   | Design of keys.                | bending and twisting and empirical                            |
|                   | 4c. Describe & Design of       | treatment                                                     |
|                   | different couplings and        | 4.3 Types of keys, Design of keys                             |
|                   | applications.                  | Assembly using different keys.                                |
|                   |                                | 4.4 Design of couplings such as Muff                          |
|                   |                                | coupling, Flange coupling, and flexible                       |
|                   |                                | coupling                                                      |
| Unit - V          | 5a. Describe Stresses in       | 5.1 Stresses in screwed fasteners due to                      |
| Design of screwed | screwed fasteners.             | static and external forces.                                   |
| and welded joints | 5b. Describe Design of bolts   | 5.2 Design of bolts for cylinder cover and                    |
|                   | 5c. Explain types of welded    | bolts of Plummer block.                                       |
|                   | joints.                        | 5.3 Bolts of uniform strength.                                |
|                   | e                              | 5.4 Design of eccentrically loaded bolts.                     |
|                   | joints                         | 5.5 Types of welded joints, Basic weld                        |
|                   |                                | symbols.<br>5.6 Design of transverse fillet weld,             |
|                   |                                | 5.6 Design of transverse fillet weld,<br>parallel fillet weld |
| Unit – VI         | 6a. Explain Concepts of screw  | 6.1 Types of screw threads used in power                      |
| Power screws      | threads used in power          | screws.                                                       |
| and               | screws.                        | 6.2 Force analysis on power screws.                           |
| Spring Design     | 6b. Describe Stresses in power | 6.3 Torque required lowering the load by                      |
|                   | screws                         | squire threads.                                               |
|                   | 6c. Explain Design of screw    | 6.4 Stresses in power screws.                                 |
|                   | jack                           | 6.5 Design of screw jack.                                     |
|                   | 6d. Understand the concept and | 6.6 Self-locking screws and overhauling                       |

|                  | its application of Self-        | of screw jack. Efficiency of self-           |
|------------------|---------------------------------|----------------------------------------------|
|                  | locking screws and              | locking screws.                              |
|                  | overhauling of screw jack.      | SPRING DESIGN                                |
|                  | 6e. Describe Types of springs   | 6.7 Types of springs and their applications. |
|                  | 6f. Describe Design of springs. | 6.8 Design of helical spring                 |
| Unit – VII       | 7a.Describe Types of bearings,  | INTRODUCTION TO BEARINGS                     |
| Introduction To  | bearing selection and mounting  | 7.1Types of bearings, bearing selection      |
| Bearings And     | 7b. Explain Commercially        | and mounting.                                |
| Ergonomics &     | available bearings in the       | 7.2 Commercially available bearings in the   |
| Aesthetic        | market                          | market.                                      |
| Consideration In | 7c. Describe Bearing materials  | 7.3 Bearing materials and their application. |
| Design           | and their application.          | ERGONOMICS & AESTHETIC                       |
|                  | 7d. Describe Ergonomics of      | CONSIDERATION IN DESIGN                      |
|                  | Design.                         | 7.4 Ergonomics of Design – Man –             |
|                  | 7e. Describe Aesthetic          | Machine relationship.                        |
|                  | considerations regarding shape, | 7.5 Design of Equipment for control,         |
|                  | size, color & surface finish    | environment & safety.                        |
|                  |                                 | 7.6 Aesthetic considerations regarding       |
|                  |                                 | shape, size, color & surface finish.         |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit |                              | Tasahing                     | Distribution Of Theory Marks |       |       |       |  |  |
|------|------------------------------|------------------------------|------------------------------|-------|-------|-------|--|--|
| No   | Title Of Unit                | Title Of Unit Teaching Hours |                              | U     | А     | TOTAL |  |  |
| 140  |                              | mours                        | level                        | Level | Level | IUIAL |  |  |
| 1    | Fundamentals Of Mechanics.   | 06                           | 02                           | 02    | -     | 04    |  |  |
| 2    | Design Considerations        | 08                           | 00                           | 04    | 04    | 08    |  |  |
| 3    | Force Considerations         | 10                           | 02                           | 05    | 06    | 13    |  |  |
| 4    | Shaft, Keys And Couplings    | 10                           | 02                           | 07    | 05    | 14    |  |  |
|      |                              |                              |                              |       |       |       |  |  |
| 5    | Design Of Screwed And Welded | 10                           | 02                           | 06    | 05    | 13    |  |  |
|      | Joints                       |                              |                              |       |       |       |  |  |
| 6    | Power Screws                 | 12                           | 04                           | 08    | 06    | 18    |  |  |
|      | And                          |                              |                              |       |       |       |  |  |
|      | Spring Design                |                              |                              |       |       |       |  |  |
| 7    | Introduction To Bearings     | 08                           | 02                           | 04    | 04    | 10    |  |  |
|      | And                          |                              |                              |       |       |       |  |  |
|      | Ergonomics & Aesthetic       |                              |                              |       |       |       |  |  |
|      | Consideration In Design      |                              |                              |       |       |       |  |  |
|      | Total                        | 64                           | 14                           | 36    | 30    | 80    |  |  |
|      |                              |                              |                              |       |       |       |  |  |

# *Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)*

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| S.  | Unit | Practical Exercises                                                                                                               | Approx.          |
|-----|------|-----------------------------------------------------------------------------------------------------------------------------------|------------------|
| No. | No.  | (Outcomes in Psychomotor Domain)                                                                                                  | Hrs.<br>required |
| 1   | Ι    | 1. Assignment on selection of materials for given applications [at                                                                | 04               |
|     |      | least five applications should be covered] using design data book.                                                                |                  |
|     |      | List the mechanical properties of material selected.                                                                              |                  |
|     |      | 2. Draw drawing sheet on Properties of commonly used Cross-<br>sections in engineering design.( Section, area, MI, Section        | 04               |
|     |      | Modulus, etc)                                                                                                                     | 04               |
| 2   | II   | Design any one joint (i.e. Cotter joint, Knuckle joint) used in actual practice and Its drawing.                                  | 06               |
| 3   | III  | Assignment Problems on design of simple machine parts like Bell                                                                   | 04               |
|     |      | Crank Lever, Lever safety valve (One example on each component)                                                                   |                  |
|     |      | with free hand sketches                                                                                                           |                  |
| 4   | IV   | Draw drawing sheet on problem of flange Coupling design.                                                                          | 04               |
| 5   | VI   | Design Problem-                                                                                                                   | 04               |
|     |      | Observe the System where transmission of power takes place                                                                        |                  |
|     |      | through power Screws.(e.g. Lead screw of lathe, feed screws of                                                                    |                  |
|     |      | machine tools, Clamping screws, Toggle Jack screw, etc.) Get the required information regarding effort, clamping force, etc., and |                  |
|     |      | selecting suitable materials design screw, nut and different simple                                                               |                  |
|     |      | components in assembly. Prepare design report and assembly                                                                        |                  |
|     |      | drawing                                                                                                                           |                  |
|     |      | Indicating overall dimensions, tolerances and surface finish. Also                                                                |                  |
|     |      | prepare bill of materials. (Activity should be completed in a group                                                               |                  |
|     |      | of five to six students)                                                                                                          |                  |
| 6   | VI   | Assignments on design of Helical Springs, Screwed joints, Welded                                                                  | 02               |
|     |      | joints [one each] with free hand sketches                                                                                         |                  |
| 7   |      | CAD drawing of any one of the above three drawings (2,4,5)should                                                                  | 04               |
|     |      | be prepared in practical and print out should be attached along with                                                              |                  |
|     |      | respective drawing sheets<br>Total                                                                                                | 32               |
|     |      | 10101                                                                                                                             | 32               |

### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular students activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- 1. Prepare journals based on assignments.
- 2. Carry out market survey for various materials available for study
- 3. Survey report should be prepared with the relevant catalogue.
- 4. Analyze the specifications, costs, quality and availability for various types of components designed in this subject and use of that component in equipments.
- 5. Interact with supplier/trader and discuss about commercial sizes of components like shafts, keys, bolts, fasteners, springs, bearings available in market.
- 6. Designing software for data acquisition regarding commercial sizes. .
- 7. Survey of Prime movers Electric motors / I.C. Engines available in the market along with specifications suitable for your design project. Survey report should be prepared with the relevant catalogue.
- 8. Search online PPT's, PDF's, video's on the design

#### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

#### **10. SUGGESTED LEARNING RESOURCE**

| S.<br>No. | Title of Book       | Author            | Publication               |
|-----------|---------------------|-------------------|---------------------------|
| 110.      |                     |                   |                           |
| 1         | Machine Design      | R.S.Khurmi        | S.Chand and Co. New Delhi |
| 2         | Machine Design      | P.V.Mandke        | S.Chand and Co. New Delhi |
| 3         | Machine Design      | R.K.Jain          | Khanna Publication        |
| 4         | Elements of Machine | Pandya and Shah.  | Charotar                  |
|           | Design              | Charotar          | Publication House         |
|           |                     | Publication House |                           |
| 5         | Introduction to     | V.B.Bhandari      | Tata Mc- Graw Hill        |
|           | Machine Design      |                   |                           |
| 6         | PSG Coimbtore       | Design Data Book  | PSG Coimbtore             |
| 7         | 06 Abdulla Shariff  | Hand Book of      | Dhanpat Rai & Sons        |
|           |                     | Properties of     |                           |

| 8 | Hall, Holowenko,<br>Laughlin                     | Engineering<br>Materials & Design<br>Theory and Problems<br>of Machine | Design Mc- Graw Hill                 |
|---|--------------------------------------------------|------------------------------------------------------------------------|--------------------------------------|
| 9 | Fundamentals of Machine Design Vol-01 and Vol-02 | Ajeet Singh                                                            | Cambridge University press,<br>India |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

#### **General Readings**

#### . IS/ International Codes

- a) IS 4218: 1967 ISO Metric Threads
- b) IS 2693: 1964 Cast Iron Flexible Couplings
- c) IS 2292: 1963 Taper keys & Keyways
- d) IS 2293: 1963 Gib Head Keys & Keyways
- e) IS 2389: 1963 Bolts, Screws, Nuts & Lock Nuts
- f) IS 4694: 1968 Square threads
- g) IS 808: 1967 Structural Steel

#### h) SKF Catalogue for Bearings

- 1. Different types of joints (knuckle, Gib and Cotter etc)
- 2. Different Shafts, couplings, keys.
- 3. Different fasteners with charts.
- 4. Different tread samples, screw jack
- 5. Different springs along with charts.
  - 6. Charts showing different Bearings and Aesthetic design considerations.

#### **12. LEARNING WEBSITE & SOFTWARE**

- a http://www.productdesign.com/product-list.php
- b http://www.products/faro-software/cam2-measure-10/overview
- c http://www.compodesign\_QuickGuide.pdf
- d http://www.engineering.design.com
- e http://www.slideshare.net/QRCE/product-design-development-1-presentation
- f https://en.wikipedia.org/wiki/Machine\_Design
- g www.machinedesign.com/

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| SNo | Course Outcome                                                                                             |   | POs |   |   |   |   |   |   | PSOs |    |    |    |
|-----|------------------------------------------------------------------------------------------------------------|---|-----|---|---|---|---|---|---|------|----|----|----|
|     |                                                                                                            | 1 | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9    | 10 | 01 | 02 |
| 1   | Calculate different<br>dimensions of machine<br>components on the basis<br>of various modes of<br>failure. | 1 | 2   | 2 | - | 1 | - | - | - | -    | -  | 3  | -  |
| 2   | Use a standard<br>designing procedure for<br>different components<br>used in engineering<br>practices.     | 2 | 3   | 1 | 2 | 1 | - | 2 | 1 | -    | 2  | 3  | -  |
| 3   | Select proper material<br>for jobs in industrial<br>design.                                                | 1 | 1   | - | - | - | - | 2 | - | -    | 3  | -  | -  |
| 4   | Use Design Data<br>Book and<br>Manufacturing<br>catalogue.                                                 | 2 | 2   | 3 | 2 | - | - | - | - | -    | 3  | -  | -  |
| 5   | Prepare part and<br>assembly drawings on<br>CAD software                                                   | 2 | 3   | 2 | 2 | - | - | - | 2 | 2    | 2  | 3  | -  |

Course Curriculum Design Committee

SrName of the<br/>faculty membersDesignation and Institute1Dr.U.V.PiseHead of the Department, Govt. Polytechnic, Aurangabad2A.W.NemadeLecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad3S.V.BordeLecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLETOOL ENGINEERINGCOURSE CODE6M409

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |  |
|---------------------------------------------------|---------------------------|--|
| Mechanical                                        | Fifth                     |  |

#### 1. RATIONALE

Tools are as basic component for any machining process. The quality and efficiency of any machining operation basically depends upon quality of tools which in turn depends upon the proper shape, size and material of the tools. Productivity and quality of machining operations may further be enhanced by proper and quick mounting of tools and jobs on machines. Jigs and fixture plays an important role in this process. Therefore this course attempts to develop abilities in students to select a tool of proper size and shape for required machining operation. The design of cutting tools, jigs and fixtures are also dealt with in this course.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Develop the ability to select and/or design cutting tools, tool holders, dies, jigs and fixture

for given simple component."

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme Total |           | Examination Scheme (Marks) |                    |        |    |           |      |       |
|-----------------------|-----------|----------------------------|--------------------|--------|----|-----------|------|-------|
|                       | Hours/ C  |                            | Credits<br>(L+T+P) | Theory |    | Practical |      | Total |
| L                     | Т         | Р                          | С                  | ESE    | РТ | ESE @     | PA   |       |
|                       | 1         | 1                          | C                  | LOL    | 11 | (OR)      | (TW) | 150   |
| 3                     | -         | 2                          | 5                  | 80     | 20 | 25#       | 25   | 130   |
| Du                    | ration of | the Examin                 | ation (Hrs)        | 03     | 01 |           |      |       |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR-** Practical; C-Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

### 4. COURSE OUTCOMES

- 1. Analyze metal cutting theory
- 2. Select proper tool for given manufacturing operation
- 3. Interpret designation system of cutting tool and tool holder.
- 4. Select locating and clamping devices for given component.
- 5. Select and design jig and fixture for given simple component.
- 6. Classify and explain various press tools and press tools operations.

# **5. DETAILED COURSE CONTENTS**

| Unit                 | Major Learning Outcomes                                                                                                    | Topics And Sub-Topics                                           |
|----------------------|----------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
|                      | (Cognitive Domain Only)                                                                                                    |                                                                 |
| Unit - I             | 1a. Compare orthogonal cutting                                                                                             | 1.1 Orthogonal & oblique cutting,                               |
| Metal cutting theory | with oblique cutting.                                                                                                      | geometry & tool signature of single                             |
|                      | 1b. Sketch the geometry of single                                                                                          | point cutting tool, mechanism of                                |
|                      | point cutting tool.                                                                                                        | metal cutting.                                                  |
|                      | <ul><li>1c. Define – shear plane, cutting<br/>ratio, shear angle, rake angle,<br/>flank, rake face.</li></ul>              | 1.2 Forces in metal cutting, Merchants circle for metal cutting |
|                      | <ul><li>1d. Explain Mohr's circle with various forces acting on it.</li><li>1e. Describe different types of tool</li></ul> | 1.3 Types of chips & their significance                         |
|                      | wear.                                                                                                                      | 1.4 Tool wear & its types, factors                              |
|                      | 1f. Calculate tool life for the given                                                                                      | affecting tool wear, use of cutting                             |
|                      | set of conditions.                                                                                                         | fluid, requirements of cutting fluid.                           |
|                      | 1g. Define machinability.                                                                                                  | Tool life equation                                              |
|                      | 1a. Enlist the factors affecting machinability.                                                                            | 1.5 Machinability & its parameters                              |
| Unit - II            | 2a. Describe essential                                                                                                     | 2.1 Types, characteristics, properties                          |
| Cutting tool         | characteristics of a good tool                                                                                             | & applications of cutting tool                                  |
| materials            | material.                                                                                                                  | materials                                                       |
|                      | 2b. Explain the properties and<br>applications of Diamond,<br>ceramics, CBN & Carbon tool<br>steels.                       | 2.2 Specifications of cutting tool materials                    |
|                      | 2c. Describe the specification of cutting tool material.                                                                   |                                                                 |

| Unit - III         | 3a. Explain nomenclature of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 3.1 Geometry (features) of twist drill,   |  |  |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--|--|
| Drills             | drilling tool.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | types of twist drill                      |  |  |
|                    | 3b. Describe various types of drills.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                           |  |  |
|                    | 3c. Explain the significance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3.2 Effect of rake angle, helix angle,    |  |  |
|                    | various angles on performance of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | point angle, relief angle on              |  |  |
|                    | drill.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | performance of drill bit.                 |  |  |
| Unit - IV          | 4a. Explain the nomenclature of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.1 Milling cutter geometry               |  |  |
| Milling cutters    | milling cutters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.2 Types of milling cutter               |  |  |
|                    | 4b. Explain various types of milling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4.3 Forces & torque acting on milling     |  |  |
|                    | cutters.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | cutter                                    |  |  |
|                    | 4c. Describe the forces & torque                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 4.4 Design procedure for milling          |  |  |
|                    | acting on milling cutter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | cutter                                    |  |  |
|                    | 4d. Describe the design procedure                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                           |  |  |
|                    | for milling cutter.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |  |  |
| Unit - V           | 5a. Sketch the geometry of a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 5.1 Sketch the geometry of a broach.      |  |  |
| Broaches           | broach.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5.2Describe various types of              |  |  |
|                    | 5b.Describe various types of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | broaches.                                 |  |  |
|                    | broaches.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                           |  |  |
| Unit – VI          | 6a. Describe gear generating tools.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 6. 1 Gear teeth generating tools          |  |  |
| Gear cutting tools | 6b.Explain the nomenclature of hob.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                           |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.2 Hob nomenclature.                     |  |  |
| Unit – VII         | 7a. Define Jig & fixture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.1 Introduction of Jigs & Fixtures,      |  |  |
| Jigs & Fixtures    | 7b. Describe various types of jigs &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Types of jigs & fixture.                  |  |  |
|                    | fixtures.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 7.2 Principles & types of locating &      |  |  |
|                    | 7c.Explain the principles of location                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | clamping devices.                         |  |  |
|                    | & clamping.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | clamping devices.                         |  |  |
|                    | 7d. Design a drill jig.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.3 Design of drill jigs, fixtures for    |  |  |
|                    | 7e. Design fixtures for turning &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | turning & milling.                        |  |  |
|                    | milling.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.4 applications of open, swinging leaf,  |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | indexing box jig.,Turing,millimg, boring, |  |  |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | fixtures.                                 |  |  |
| Unit – VIII        | 8a. Describe the mechanism of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 8.1 Mechanism of shearing, blanking       |  |  |
| Press Tools        | shearing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | & piercing, clearances on punch &         |  |  |
|                    | 8b. Calculate punch force & locate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | die, punching force & center of           |  |  |
|                    | the centre of punch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | punch.                                    |  |  |
|                    | 8c.Explain standard die set.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                           |  |  |
|                    | 8d. Explain compound &                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.2 Standard die set & its advantages,    |  |  |
|                    | progressive dies.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | commercial & precision die set,           |  |  |
|                    | 8e. Describe functions of pilots,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | simple, compound & progressive die        |  |  |
|                    | line in the second seco |                                           |  |  |

|                                                  | <ul> <li>strippers, pressure pads, stops &amp; stock guides.</li> <li>8f. Draw stock strip layout.</li> <li>8g. Explain various die operations.</li> <li>8h. Calculate material utilization factor.</li> </ul>                                                                                                                                                                                                          | <ul> <li>8.3 Pilots, strippers, pressure pads,<br/>stops (manual &amp; automatic) stock<br/>guide &amp; stock strip layouts.</li> <li>8.4 Die operations- blanking, piercing,<br/>lancing, drawing, bending, forming.<br/>Calculation of material utilization<br/>factor.</li> </ul>                                                                    |
|--------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – IX<br>Bending, Drawing<br>& Forging dies. | <ul> <li>9a.Describe various methods of<br/>bending.</li> <li>9b.Explain bending die.</li> <li>9c.Define bends allowance, spring<br/>back &amp; spanking.</li> <li>9d.Explain drawing operation.</li> <li>9e.Explain drawing dies.</li> <li>9f.Enlist the factors affecting<br/>material flow during drawing.</li> <li>9g. Calculate the blank size for<br/>drawing.</li> <li>9h. Explain forging mechanism.</li> </ul> | <ul> <li>9.1 Methods of bending, bending dies, bend allowances, spring-back, spanking, bending pressure, bending pads.</li> <li>9.2 Drawing operation, drawing die, metal flow &amp; variables affecting metal flow during drawing, calculation of blank size for drawing.</li> <li>9.3 Introduction to forging mechanism &amp; terminology.</li> </ul> |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                      | Teaching | Distribution of Theory Marks |       | ory Marks |             |
|------|---------------------------------|----------|------------------------------|-------|-----------|-------------|
| No.  |                                 | Hours    | R U A                        |       | А         | Total Marks |
|      |                                 |          | Level                        | Level | Level     |             |
| Ι    | Metal Cutting Theory            | 07       | 06                           | 08    | 02        | 16          |
| II   | Cutting Tool Material           | 02       | 02                           | 02    | 02        | 06          |
| III  | Drills                          | 03       | 00                           | 02    | 02        | 04          |
| IV   | Milling Cutter                  | 03       | 02                           | 02    | 00        | 04          |
| V    | Broaches                        | 02       | 02                           | 02    | 00        | 04          |
| VI   | Gear Cutting Tools              | 02       | 00                           | 02    | 02        | 04          |
| VII  | Jigs & Fixtures                 | 05       | 00                           | 04    | 04        | 08          |
| VIII | Press Tools                     | 08       | 02                           | 12    | 06        | 20          |
| IX   | Bending, Drawing & Forging Dies | 16       | 00                           | 08    | 06        | 14          |
|      | Total                           | 48       | 14                           | 42    | 24        | 80          |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.   | Unit No.  | Practical Exercises                                                                                                                                                                         | Approx.  |  |  |
|-------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--|--|
| No.   |           | (Outcomes in Psychomotor Domain)                                                                                                                                                            | Hrs.     |  |  |
|       |           |                                                                                                                                                                                             | required |  |  |
| 1     | Ι         | Two assignments on calculation of cutting forces & shear<br>angle based on Merchant circle. & One assignment on<br>designation of carbide tools & references of manufacturing<br>catalogue. | 04       |  |  |
| 2     | III to VI | Sketches of different cutting tools showing details of tool features (geometry)                                                                                                             | 03       |  |  |
| 3     | VIII      | Sketches of progressive die, combination die, and compound<br>die, inverted die, drawing die, bending die.( Sheet no1 & 2<br>each contain sketches of three dies each) use A-4 size         | 04       |  |  |
| 4     | VIII      | Drawing of stock strip layout for simple component<br>(different component for each student on sheet no.3) use A-4<br>size.                                                                 |          |  |  |
| 5     | IX        | Assignment on description & Sketch of forging die.                                                                                                                                          | 02       |  |  |
| 6     | VIII      | Assignment on types of punches, punch holders, punches shedders, pilots & strippers.                                                                                                        | 02       |  |  |
| 7     | VIII      | Design of blanking die – design calculations & drawing sheets showing assembly & details (sheet no.4)                                                                                       | 03       |  |  |
| 8     | VII       | Design of any one fixture (drilling/milling) for any practical component – drawing sheets showing assembly & details                                                                        | 04       |  |  |
| 9     | II        | Demonstration of ISO nomenclature for tool holders and<br>inserts (use various manufacturer's tool catalogues)                                                                              | 04       |  |  |
| 10    | Ι         | Collection of various chip samples and analyze it.                                                                                                                                          | 04       |  |  |
| Total |           |                                                                                                                                                                                             |          |  |  |

# 8. SUGGESTED STUDENTS ACTIVITIES

- a. Download the catalogues for cutting tools, jigs and fixtures
- b. Visit nearby manufacturing unit and prepare the report for same.

# 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

| Sr. No. | Unit | Unit Name                       | Strategies                                                                                |
|---------|------|---------------------------------|-------------------------------------------------------------------------------------------|
| 1       | Ι    | Introduction.                   | Movie, Industrial visit.                                                                  |
| 2       | II   | Cutting tools and tool holders. | Demonstration of physical cutting tools and tool holders.                                 |
| 3       | III  | Locating and clamping devices.  | Demonstration of physical<br>locating and clamping devices<br>in operation, video movies, |
| 4       | IV   | Jigs and fixtures.              | Demonstration with operations, video movies, Industrial visits.                           |
| 5       | V    | Press tools.                    | Demonstration with operations, video movies, Industrial visits.                           |
| 6       | VI   | Dies and mould.                 | Video movies, Industrial visits.                                                          |

# **10. LEARNING RESOURCE**

| Sr.No. | Title of Book    | Author                         | Publication            |
|--------|------------------|--------------------------------|------------------------|
| 1      | Donaldson Anglin | Tool Design                    | Tata McGraw Hill       |
| 2      | A. S. T. M. E    | Fundamentals of Tool<br>Design | Prentice Hall of India |
| 3      | Kempster         | Jigs & Fixture                 | E. L. B. S.            |
| 4      | P. H. Joshi      | Jigs & Fixture                 | Tata McGraw Hill       |
| 5      | P. H. Joshi      | Press Tools                    | Tata McGraw Hill       |
| 6      | Н. М. Т.         | Production Technology          | Tata McGraw Hill       |
| 7      | Amitabh Ghosh    | Manufacturing Science          | Tata McGraw Hill       |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.No. | Resources with brief specification                                                                                                                                                                                                                                    |
|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Tool and cutter grinding machine.                                                                                                                                                                                                                                     |
| 2      | Cutting tools, mainly set consisting assorted sizes of drill bits, set consisting assorted sizes of end mills, set consisting assorted sizes of side and face milling cutters, set consisting assorted sizes of centre drills-Type A and B, assorted carbide inserts, |
| 3      | Tool holders for carbide inserts, drill spindles/quills, milling machine quills.                                                                                                                                                                                      |
| 4      | Most commonly used set of locators and clamping devices, jigs and fixtures.                                                                                                                                                                                           |
| 5      | Models of jigs and fixtures.                                                                                                                                                                                                                                          |
| 6      | Press-2.5 to 5 Tonnes,(Hydraulic or electrical operated), set of assorted sizes punches and dies,                                                                                                                                                                     |

# 12. LEARNING WEBSITE & SOFTWARE

- a. http://www.psgdesigndata.org
- b. <u>http://www.carrlane.com</u>
- c. <u>http://www.nptel.ac.in</u>

## 13. MAPPING OF PROGRAMME OUTCOMES (Pos) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (Cos)

| Sno | Course Outcome                                                             |   | POs |   |   |   |   | PSOs |   |   |    |    |    |
|-----|----------------------------------------------------------------------------|---|-----|---|---|---|---|------|---|---|----|----|----|
|     |                                                                            | 1 | 2   | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 01 | 02 |
| 1   | Analyze metal cutting theory                                               | 3 | 3   | 2 | 3 | _ | 2 | -    | - | _ | 2  | -  | 3  |
| 2   | Select proper tool for<br>given manufacturing<br>operation                 | 3 | 3   | 2 | 3 | - | 2 | -    | - | - | 2  | -  | 3  |
| 3   | Interpret designation<br>system of cutting tool<br>and tool holder.        | 2 | 3   | 2 | 2 | - | - | -    | - | - | 2  | 2  | -  |
| 4   | Select locating and clamping devices for given component.                  | 3 | 3   | 2 | 3 | - | 2 | -    | - | - | 2  | -  | 3  |
| 5   | Select and design jig<br>and fixture for given<br>simple component.        | 3 | 3   | 2 | 3 | - | 2 | -    | 1 | - | 1  | -  | 3  |
| 6   | Classify and explain<br>various press tools and<br>press tools operations. | 2 | 3   | 2 | 3 | - | 1 | -    | - | - | 1  | _  | 3  |

### **Course Curriculum Design Committee**

| Sr | Name    | of the |
|----|---------|--------|
|    | 1 vanne | or the |

Designation and Institute

- No faculty members
- 1 N.S.Khandagale Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad
- 2 S.V.Borde Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad
- 3. P.D.Shelke Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEPOWER PLANT ENGINEERINGCOURSE CODE6M411

### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fifth                     |

### 1. RATIONALE

The consumption of electrical energy per capita is universally accepted as a scale for measuring the living standard of a country. The demand for energy is increasing day by day and existing power generation capacity is inadequate to meet this increasing demand. Industries are expected to generate their own power and supply the excess power to national grid. Alternate energy sources are also harnessed to meet the increasing demand. Diploma engineers should know the layout, components of different power plants and economic aspects of power plants.

### 2. COMPETENCY

"Analyze, Repair, maintain and troubleshoot the different power plant equipment's and systems"

### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme Tota              |          | Total | Examination Scheme (Marks) |        |    |             |            |        |  |        |  |        |  |        |  |           |  |       |
|-----------------------------------|----------|-------|----------------------------|--------|----|-------------|------------|--------|--|--------|--|--------|--|--------|--|-----------|--|-------|
|                                   | Hours/ C |       | Credits<br>(L+T+P)         | Theory |    | Theory      |            | Theory |  | Theory |  | Theory |  | Theory |  | Practical |  | Total |
| L                                 | Т        | Р     | С                          | ESE    | РТ | ESE<br>(OR) | PA<br>(TW) |        |  |        |  |        |  |        |  |           |  |       |
| 4                                 | -        | 2     | 6                          | 80     | 20 | 25#         | 25         | 150    |  |        |  |        |  |        |  |           |  |       |
| Duration of the Examination (Hrs) |          |       |                            | 03     | 01 | -           | -          |        |  |        |  |        |  |        |  |           |  |       |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR-** Practical; C-Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Get familiar with present and future power scenario of India.
- 2. Calculate efficiency of power generation cycles.
- 3. Analyze working of high pressure boilers, coal and ash handling systems of power plant.
- 4. Draw layout, understand the working and compare different power plants.
- 5. Identify sources of waste heat and determine method of heat recovery.
- 6. Explain constructional features of non conventional energy source devices.
- 7. Appreciate economical and operational aspects of power plants.

### 5. DETAILED COURSE CONTENTS

| Unit         |    | Major Learning Outcomes<br>(Cognitive Domain Only) | Topics And Sub-Topics                            |
|--------------|----|----------------------------------------------------|--------------------------------------------------|
| UNIT NO: 1.  |    | 1a. Describe different power                       | 1.1 Power scenario in India                      |
| Introduction | to | plants.                                            | 1.2 Types of power plants – Hydro,               |
| Power Plants |    | 1b. Analyze various steam power cycles.            | Nuclear, Thermal, Future trends in power sector. |
|              |    | 1c. Draw gas turbine cycle.                        | 1.3 Analysis of steam cycles- Carnot,            |
|              |    |                                                    | Rankine, Reheat cycle, Regenerative              |
|              |    |                                                    | cycle, Methods of reheating,                     |
|              |    |                                                    | Advantages and disadvantages of                  |
|              |    |                                                    | reheat cycle,                                    |
|              |    |                                                    | 1.4 Gas turbine cycle.                           |

| Unit - II                         | 2a. Draw layout of steam                                                                                                                                                                                                                                                                                                                        | 2.1 Layout of steam power plant, general                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   | •                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Steam Power Plant                 | <ul> <li>critical and Super-critical boilers.</li> <li>2c. Describe coal &amp; ash handling systems.</li> <li>2d. Analyze the environmental problems associated with the steam power plant.</li> </ul>                                                                                                                                          | <ul> <li>features of selection of site</li> <li>2.2 High pressure boilers – Construction<br/>and working of Sub-critical and Super-<br/>critical boilers</li> <li>2.3 Coal and ash handling system-<br/>equipments for in plant handling of coal<br/>such as belt conveyor, screw conveyor,<br/>bucket elevator, Coal crushing,<br/>Pulverized fuel handling system, Ball<br/>mill, Pulverized fuel and their<br/>advantages, Multi retort stoker,<br/>Pulverized fuel burner, Hydraulic and<br/>pneumatic ash handling, Electrostatic<br/>precipitator.</li> <li>2.4 Boiler Feed water treatment</li> <li>2.5 Environmental aspects of steam power<br/>plant - water pollution, air pollution,<br/>emission standard and its control</li> </ul> |
| Unit - III<br>Nuclear Power Plant | <ul> <li>3b. Describe criteria for the selection of site for nuclear power plant.</li> <li>3c. Explain different types of nuclear reactors.</li> <li>3d. Compare different nuclear fuels &amp; moderators.</li> <li>3e. Enlist safety precautions for nuclear plants.</li> <li>3f. Describe different nuclear power plants in India.</li> </ul> | <ul> <li>3.1. Fusion and fission reaction, layout<br/>and general criteria for selection of<br/>site.</li> <li>3.2. Elements of nuclear power station,<br/>layout, types of nuclear reactors.</li> <li>3.3. Nuclear fuels, coolant &amp; moderators.</li> <li>3.4. Working of PWR, BWR, CANDU,<br/>BREEDER, GCR, SGR, LMFBR type<br/>reactor.</li> <li>3.5. Safety precautions and waste<br/>disposals.</li> <li>3.6. Nuclear power plants in India.</li> </ul>                                                                                                                                                                                                                                                                                  |
| Unit - IV                         | 4a. Draw general layout of gas                                                                                                                                                                                                                                                                                                                  | 4.1 General Layout, selection of site for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Gas Turbine Power                 | turbine power plant.                                                                                                                                                                                                                                                                                                                            | Gas turbine power plants in India.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Plants                            | 4b. Describe parameters for<br>selection of gas turbine<br>power plant site.                                                                                                                                                                                                                                                                    | <ul><li>4.2 Components of gas turbine plants, gas turbine Fuels.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                   | turbine power plant.                                                                                                                                                                                                                                                                                                                            | 4.3 Environmental impact of gas turbine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|                                                             | 1                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                             | 4d. Analyze the environmental impact of gas turbine plants.                                                                                                                                                                                                                                                                                                  | power plant.                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| UNIT NO: V<br>Sources of waste<br>Heat                      | <ul> <li>5a. Explain various methods<br/>of heat recovery.</li> <li>5b. Explain the utilization of<br/>waste heat in various<br/>fields.</li> <li>5c. Compare waste heat<br/>recovery boilers with<br/>conventional boilers.</li> </ul>                                                                                                                      | <ul> <li>5.1 Heat recovery forms &amp; methods –<br/>Sensible and latent Heat recovery.</li> <li>5.2 Use of waste heat- Agricultural,<br/>green house, Animal shelter, Aqua<br/>cultural uses, process heating.</li> <li>5.3 Waste Heat recovery boilers</li> </ul>                                                                                                                                                                                                         |
| Unit – VI<br>Non-conventional<br>Power Generation<br>Plants | <ul> <li>6a. Explain geothermal power plant.</li> <li>6b. Explain Tidal power plant.</li> <li>6c. Explain Wind power plant.</li> <li>6d. Explain solar power plant.</li> <li>6e. Explain Magneto Hydro dynamic power plant.</li> <li>Explain small hydro power plant.</li> <li>6f. Describe plasma technology.</li> </ul>                                    | <ul> <li>6.1 Geothermal power plant-types, economical justification</li> <li>6.2 Tidal power plant- factors affecting suitability of site, working of different tidal power plants, advantages and disadvantages</li> <li>6.3 Wind power plant- different types, advantages and disadvantages.</li> <li>6.4 Solar power plant</li> <li>6.5 Magneto Hydro dynamic power plant</li> <li>6.6 Small hydro power plant</li> <li>6.7 Introduction to Plasma technology</li> </ul> |
| Unit – VII<br>Economic &<br>Operational aspects             | <ul> <li>7a. Justify the selection of suggested power generation.</li> <li>7b. Determine the number of generating units.</li> <li>7c. Draw load duration curve.</li> <li>7d. Estimate the cost &amp; suggest suitable method to control it for the given power plant.</li> <li>7e. Explain major electrical equipments used in any power station.</li> </ul> | <ul> <li>7.1 Prediction of load, selection of types of generation, number of generating units.</li> <li>7.2 Load duration curves, cost analysis, elements, controlling the cost of power plant (simple numerical)</li> <li>7.3 Major electrical equipments in power station- generator, step-up transformer, switch gear, electrical motors</li> </ul>                                                                                                                      |

### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit<br>No. | Unit Title                               | Teaching<br>Hours | Distribution of Theory Marks |       |       |       |  |
|-------------|------------------------------------------|-------------------|------------------------------|-------|-------|-------|--|
| 110.        |                                          | nouis             | R                            | U     | Α     | Total |  |
|             |                                          |                   | Level                        | Level | Level | Marks |  |
| Ι           | Introduction to power plant              | 08                | 02                           | 04    | 02    | 08    |  |
| II          | Steam power plant                        | 12                | 04                           | 08    | 04    | 16    |  |
| III         | Nuclear power plant                      | 14                | 02                           | 08    | 06    | 16    |  |
| IV          | Gas turbine power plant                  | 04                | 00                           | 04    | 04    | 08    |  |
| V           | Sources of waste heat                    | 06                | 02                           | 04    | 04    | 10    |  |
| VI          | Non conventional power generation plants | 10                | 02                           | 04    | 04    | 10    |  |
| VII         | Economics and operational aspects        | 10                | 02                           | 06    | 04    | 12    |  |
|             | Total                                    | 64                | 14                           | 38    | 28    | 80    |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Practical Exercises                                                  | Approx.  |
|------------|------|----------------------------------------------------------------------|----------|
| NO.        | No.  | (Outcomes in Psychomotor Domain)                                     | Hrs.     |
|            |      |                                                                      | required |
| 1          | Ι    | Visit to steam power plants/nuclear power plants/wind power plants/  | 10       |
|            |      | Hydro power plants and prepare a report.                             |          |
| 2          | Ι    | Collect information & Technical details of nuclear power plants.     | 04       |
| 3          | II   | Collect information & Technical details of Steam power plants        | 04       |
| 4          | II   | Collect information & Technical details of Solar & Wind power plants | 04       |
| 5          | II   | Study of economic and operational aspects of power plants (simple    | 02       |

|   |       | numerical)                                |    |  |  |
|---|-------|-------------------------------------------|----|--|--|
| 6 | III   | Assignment on Coal & Ash Handling system  | 04 |  |  |
| 7 | III   | Assignment on Waste Heat recovery systems | 04 |  |  |
|   | Total |                                           |    |  |  |

### 8. SUGGESTED STUDENTS ACTIVITIES

- 1. Prepare journals based on practical performed in laboratory.
- 2. Internet information on Survey on comparative technical data of different power plants
- 3. Collect information from net regarding power plant equipments and systems.
- 4. Collect information about uses, functions, designs of equipments.
- 5. Collect technical specifications
- 6. Enlist different routine maintenance procedures

### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods including Chalk Board, LCD projector, Video Clips, etc.
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning
- f. Computer Based Training Packages/Computer Aided Instructions Packages/CDs: For
  - Ash Handling System.
  - Gas Turbine and combined cycle power plant.
  - Power Station Safety.
  - Environmental pollution & pollution control.
  - Pulverizes and feeders.
  - Renewable energy sources

### **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                               | Author                          | Publication                |
|-------|--------------------------------------------|---------------------------------|----------------------------|
| 1     | Power plant<br>Engineering                 | P. K. Nag                       | Tata McGraw Hill           |
| 2     | Power plant<br>Engineering                 | Fredrick T. Mosse               | East-West press            |
| 3     | A text book of Power<br>System Engineering | A. Chkrabarti and M.<br>L. Soni | Dhanpat Rai and<br>Company |
| 4     | A course in power<br>plant Engineering     | Arora and<br>Domkundwar         | Dhanpat Rai and<br>Company |
| 5     | Power plant<br>Engineering                 | R.K. Rajput                     | Tata McGraw Hill           |

### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S.<br>No. | Name of equipment                                          | Brief specification |
|-----------|------------------------------------------------------------|---------------------|
| 1.        | Model or Chart & Videos of Hydro-electric<br>Power Plant   | As per curriculum   |
| 2.        | Model or Chart & Videos of Thermo-<br>electric Power Plant | As per curriculum   |
| 3.        | Model or Chart & Videos of Nuclear<br>Power Plant          | As per curriculum   |
| 4.        | Model or Chart & Videos of Wind Power<br>Plant             | As per curriculum   |
| 5.        | Model or Chart & Videos of MHD Power<br>Plant              | As per curriculum   |
| 6.        | Model or Chart & Videos of CHP                             | As per curriculum   |

### 12. LEARNING WEBSITE & SOFTWARE

- a. https://btps.com
- b. https://ptps.com
- c. https://etps.com
- d. https://chp.com
- e. https://nhpc.com
- f. https://ntpc.com

### 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| S.No | Course Outcome                                                                                      |    | POs |    |    |    |    |    | PSOs |    |    |    |    |
|------|-----------------------------------------------------------------------------------------------------|----|-----|----|----|----|----|----|------|----|----|----|----|
|      |                                                                                                     | 1  | 2   | 3  | 4  | 5  | 6  | 7  | 8    | 9  | 10 | 01 | 02 |
| 1    | Get familiar with<br>present and future<br>power scenario of<br>India.                              | 01 | 01  | 01 | 02 | 03 | 01 | 02 | -    | 02 | 02 | 02 | -  |
| 2    | Calculate efficiency of power generation cycles.                                                    | 03 | 02  | 01 | 02 | 02 | 01 | -  | 01   | 01 | 02 | 03 | 02 |
| 3    | Analyze working of<br>high pressure boilers,<br>coal and ash handling<br>systems of power<br>plant. | 02 | 02  | 01 | 02 | 02 | 01 | 01 | 01   | 01 | 02 | 03 | 01 |
| 4    | Draw layout,<br>understand the<br>working and compare<br>different power plants.                    | 03 | 02  | 01 | 03 | 02 | 01 | 01 | -    | 01 | 02 | 02 | -  |
| 5    | Identify sources of<br>waste heat and<br>determine method of<br>heat recovery.                      | 03 | 02  | 02 | 03 | 01 | 02 | 01 | 01   | 02 | 02 | 02 | 02 |
| 6    | Explain<br>constructional features<br>of non conventional<br>energy source devices.                 | 03 | 02  | 02 | 03 | 03 | 01 | 02 | -    | 01 | 02 | 03 | 01 |
| 7    | Appreciate economical<br>and operational<br>aspects of power<br>plants.                             | 03 | 02  | 02 | 02 | 02 | 01 | 01 | 01   | 01 | 03 | 02 | 03 |

### **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                         |
|----------|-----------------------------|-------------------------------------------------------------------|
| 1        | Dr. U. V. Pise              | Head of the Department, Govt. Polytechnic, Aurangabad             |
| 2        | M. B. Sanap                 | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 3        | R. N. Khadse                | Lecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad  |

GPA

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEREFRIGERATION AND AIR CONDITIONINGCOURSE CODE6M412

### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | fifth                     |

### 1. RATIONALE

The 21st century predicts revolutionary developments in Refrigeration and Air Conditioning. Refrigeration and Air conditioning is one of the most important job areas for diploma holders in Mechanical Engineering. Considering the wide and increasing use of Refrigeration and Air conditioning for domestic, commercial and industrial applications and the challenges put by the use of Refrigeration and air conditioning equipments in present stage, it is absolutely necessary that Diploma Engineers should learn this subject. They should know the processes, equipments, systems of Refrigeration and Air Conditioning with their functioning, maintenance, repairs and measures to meet the challenges of the near future in this area.

### 2. COMPETENCY

At the end of studying this course students will be able to

"Analyze, repair, maintain and troubleshoot the different Refrigeration and Air conditioning systems"

| Teaching Scheme Total             |           |   | Examination Scheme (Marks) |        |    |             |            |        |  |        |  |        |  |        |  |               |  |       |
|-----------------------------------|-----------|---|----------------------------|--------|----|-------------|------------|--------|--|--------|--|--------|--|--------|--|---------------|--|-------|
|                                   | (Hours/ C |   | Credits<br>(L+T+P)         | Theory |    | Theory      |            | Theory |  | Theory |  | Theory |  | Theory |  | Theory Practi |  | Total |
| L                                 | Т         | Р | С                          | ESE    | РТ | ESE<br>(OR) | PA<br>(TW) |        |  |        |  |        |  |        |  |               |  |       |
| 4                                 | 0         | 2 | 6                          | 80     | 20 | 25#         | 25         | 150    |  |        |  |        |  |        |  |               |  |       |
| Duration of the Examination (Hrs) |           |   | 3                          | 1      |    |             |            |        |  |        |  |        |  |        |  |               |  |       |

### 3. TEACHING AND EXAMNATION SCHEME

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR**- Practical; C-Credits; **ESE**- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal, ~ online exam

### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Describe types, working principles and construction of Refrigeration and Air Conditioning systems.
- 2. Calculate performance of refrigeration and air conditioning system
- 3. Enlist properties of refrigerants, their applications and effects on environment.
- 4. Identify various components and controls used in refrigeration and air conditioning.
- 5. Describe various refrigeration & air conditioning systems and their applications.
- 6. Estimate cooling and heating loads.

### 5. DETAILED COURSE CONTENTS

| Unit                                    | Major Learning Outcomes                                                                                                                                                                                                                                                             | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         | (Cognitive Domain Only)                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| UNIT : I.<br>Basics of<br>Refrigeration | <ul> <li>1a. Differentiate conventional<br/>and non conventional<br/>methods of refrigeration</li> <li>1b. Describe conventional and<br/>non conventional methods<br/>of refrigeration</li> <li>1c. Describe Concept of heat<br/>engine, heat pump and<br/>refrigerator.</li> </ul> | <ul> <li>1.1 Definition of refrigeration.</li> <li>1.2 Necessity of refrigeration</li> <li>1.3 Methods of refrigeration:-Ice refrigeration, Refrigeration by expansion of air, Refrigeration by throttling of gas, Vapour refrigeration system, Steam jet refrigeration system. Non-conventional methods of refrigeration like Vortex tube, Pulse tube refrigeration, solar refrigeration</li> <li>1.4 Concept of heat engine, heat pump and refrigerator.</li> <li>1.5 Unit of refrigeration, C.O.P. and refrigerating effect.</li> </ul> |

| Unit - II            | 2a. | Describe reversed Carnot                       | 2.1 Reversed Carnot Cycle and its          |
|----------------------|-----|------------------------------------------------|--------------------------------------------|
| Refrigeration Cycles |     | Cycle / representation on                      | representation on PV and TS diagram.       |
|                      | 2b. | PV and TS diagram<br>Describe Bell Coleman air | 2.2 Air Refrigeration Cycles: -            |
|                      | 20. | refrigerator/ representation                   | -Bell Coleman air refrigerator, it's       |
|                      |     | on PV and TS diagram                           | representation on PV and TS                |
|                      | 2c. | Calculate COP using                            | diagram, types and applications like       |
|                      |     | reversed Carnot cycle                          | air craft refrigeration using simple air   |
|                      | 2d. | Draw and explain Vapour                        | cooling system                             |
|                      |     | Compression                                    | - (Simple numerical on Reversed            |
|                      |     | Cycle/calculate COP                            | Carnot cycle.)                             |
|                      | 2e. | Describe Vapour                                | 2.3 Vapour Compression Cycle : -           |
|                      |     | absorption Refrigeration                       | -Principle, components, Representation     |
|                      |     | system.                                        | on P-H and T-S diagram, effects of         |
|                      |     |                                                | wet compression, dry compression,          |
|                      |     |                                                | calculation of COP, Effect of              |
|                      | 1   |                                                |                                            |
|                      |     |                                                | superheating, under cooling, suction       |
|                      |     |                                                | pressure and discharge pressure,           |
|                      |     |                                                | Actual V.C.C., (simple numerical),         |
|                      |     |                                                | Methods of improving COP (no               |
|                      |     |                                                | description).                              |
|                      |     |                                                | -Introduction to multistage V.C.C., its    |
|                      |     |                                                | necessity, advantages.                     |
|                      |     |                                                | 2.4 Vapour Absorption system : -           |
|                      |     |                                                | Principle, components and working          |
|                      |     |                                                | of aqua ammonia system ( simple and        |
|                      |     |                                                | practical ) Li-Br Absorption System        |
|                      |     |                                                | Electrolux Refrigeration System,           |
|                      |     |                                                | Desirable properties of Refrigerant        |
|                      |     |                                                | and absorbent used in Vapour               |
|                      | 1   |                                                | Absorption System.                         |
|                      |     |                                                | 2.5 Comparison of above Refrigeration      |
|                      |     |                                                | Cycles.                                    |
| Unit - III           | 3a. | Differentiate conventional                     | 3.1. Classification of refrigerants.       |
| Refrigerants         |     | and eco friendly                               | 3.2. Desirable properties of refrigerants. |
|                      |     | refrigerants.                                  | 3.3. Nomenclature of refrigerants.         |
|                      | 3b. | Describe Green house                           | 3.4. Selection of refrigerant for specific |
|                      | 1   | effect and ozone layer                         | applications.                              |
|                      | 2   | depletion.                                     | 3.5. Concept of Green House Effect,        |
|                      | 3C. | Describe Global warming ODP & GDP.             | Ozone depletion, Global warming,           |
|                      | 34  | Apply the knowledge to                         | ODP & GDP of refrigerants.                 |
|                      | Ju. | rippiy the knowledge to                        | ODI & ODF OI TEITIgerallis.                |

GPA

### Refrigeration And Air Conditioning

|                                  | select proper refrigerant.                                                                                                                                                                                     | 3.6. Important thermodynamic                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  | server proper terrigeration                                                                                                                                                                                    | properties of Eco-friendly refrigerants                                                                                                                                                                                                                                                                                                                         |
|                                  |                                                                                                                                                                                                                | like R-134a, hydrocarbon refrigerants                                                                                                                                                                                                                                                                                                                           |
|                                  |                                                                                                                                                                                                                | etc                                                                                                                                                                                                                                                                                                                                                             |
| Unit - IV<br>Equipment selection | 4a. Describe Components<br>used in VCS & VAS<br>refrigeration System.                                                                                                                                          | ComponentsofVapourCompression Refrigeration System                                                                                                                                                                                                                                                                                                              |
|                                  | <ul> <li>4b. Differentiate<br/>Compressors, Condensers,<br/>Expansion devices,<br/>evaporator and chillers.</li> <li>4c. Apply the knowledge to<br/>select components for<br/>refrigeration systems</li> </ul> | <ul> <li>4.1 Compressors:<br/>Classification, Construction and<br/>working of open type, hermetic,<br/>centrifugal, rotary, screw and scroll<br/>compressor and their applications.</li> <li>4.2 Condensers:<br/>Classification, description of air cooled<br/>and water cooled condensers,<br/>comparison and applications,<br/>Economic condensers</li> </ul> |
|                                  |                                                                                                                                                                                                                | <ul> <li>Evaporative condensers.</li> <li>4.3 Expansion devices:<br/>Types: - Capillary tube, automatic,<br/>thermostatic expansion valve and<br/>their applications</li> </ul>                                                                                                                                                                                 |
|                                  |                                                                                                                                                                                                                | 4.4 Evaporators and chillers: -<br>Classification of evaporators<br>Construction and working of Bare tube,<br>Plate surface, finned, shell and tube,<br>flooded and dry expansion evaporator<br>Capacity of evaporator and their<br>applications.                                                                                                               |
|                                  |                                                                                                                                                                                                                | Classification of chillers<br>Construction and working of dry<br>expansion Chillers, flooded chillers<br>and their applications.                                                                                                                                                                                                                                |
| UNIT NO: V                       | 5a. Describe properties of air                                                                                                                                                                                 | 5.1 Definition and necessity of air-                                                                                                                                                                                                                                                                                                                            |
| Psychrometry                     | on psychrometric chart.                                                                                                                                                                                        | conditioning.                                                                                                                                                                                                                                                                                                                                                   |
|                                  | <ul><li>5b. Draw and explain<br/>psychrometric chart.</li><li>5c. Select equipments used</li></ul>                                                                                                             | 5.2 Properties of Air, Dalton's law of partial pressure                                                                                                                                                                                                                                                                                                         |
|                                  | for conditioning of air                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                 |

GPA

### Refrigeration And Air Conditioning

|                                                |                                                                                                                                                                 | 5.3 Psychrometric chart                                                                                                     |
|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------|
|                                                |                                                                                                                                                                 | 5.4 Psychrometric processes, Bypass<br>Factor, ADP, concept of SHF, RSHF.                                                   |
|                                                |                                                                                                                                                                 | <ul><li>5.5 Adiabatic mixing of Air streams</li><li>( simple numerical )</li></ul>                                          |
|                                                |                                                                                                                                                                 | 5.6 Simple numerical using Psychrometric chart                                                                              |
|                                                |                                                                                                                                                                 | 5.7 Equipments used for Air- conditioning<br>like humidifier, dehumidifier, filter,<br>heating and cooling coils.           |
| Unit – VI                                      | 6a. Differentiate air                                                                                                                                           | 6.1 Classification of A.C. systems                                                                                          |
| Air- conditioning<br>systems : Comfort         | conditioning systems<br>6b. Describe human comfort,<br>effective temp. and<br>comfort chart                                                                     | 6.2 Industrial and commercial A.C. systems                                                                                  |
| conditions and<br>cooling load<br>calculations | <ul> <li>6c. Describe Components of cooling load- sensible heat gain and latent heat</li> </ul>                                                                 | 6.3 Summer, winter and year round A.C. systems                                                                              |
|                                                | 6d. Distinguish sensible heat                                                                                                                                   | 6.4 Central and unitary A.C. systems                                                                                        |
|                                                | gain and latent heat gain sources                                                                                                                               | 6.5 Application areas of A.C. systems                                                                                       |
|                                                |                                                                                                                                                                 | 6.6 Thermal exchange of body with environment                                                                               |
|                                                |                                                                                                                                                                 | 6.7 Factors affecting human comfort                                                                                         |
|                                                |                                                                                                                                                                 | 6.8 Effective temp. and comfort chart                                                                                       |
|                                                |                                                                                                                                                                 | 6.9 Components of cooling load- sensible heat gain and latent heat gain sources                                             |
| Unit – VII                                     | 7a. Draw and explain                                                                                                                                            | 7.1 Duct systems: - Closed perimeter                                                                                        |
| Air distribution<br>systems                    | <ul> <li>various duct systems</li> <li>7b. Describe different<br/>equipments used for<br/>distribution of air.</li> <li>7c. Select proper insulation</li> </ul> | system, extended plenum system,<br>radial duct system, duct materials,<br>requirement of duct materials, losses in<br>ducts |
|                                                | for ducts.                                                                                                                                                      | 7.2 Fans and Blowers: - Types, working of fans and blowers                                                                  |
|                                                |                                                                                                                                                                 | 7.3 Air distribution outlets: -Supply                                                                                       |

GPA

### Refrigeration And Air Conditioning

|                                                                                      |                                                                                                                                                                                                                                                                                                                               | outlets, return outlets, grills, diffusers                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                      |                                                                                                                                                                                                                                                                                                                               | 7.4 Insulation: - Purpose, properties of<br>insulating material, types of insulating<br>materials, methods of applying<br>insulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Unit- VIII<br>Application and<br>advances in<br>refrigeration & air-<br>conditioning | <ul> <li>8a. compare single door &amp; double door freeze</li> <li>8b. Design a cold storage from refrigeration point of view</li> <li>8c Select capacity, components and controls for shopping mall AC system</li> <li>8d Apply knowledge &amp; skills in designing of dairy plant &amp; Mobile van refrigeration</li> </ul> | <ul> <li>8.1 Technical features of double door refrigerator (freeze). Recent features like compressor type, capacity, refrigerant type, controls, commercial data</li> <li>8.2 General considerations of Cold storage like its layout, plant capacity, components, refrigerants used, controls, pipings, insulations. Food items to be stored &amp; their approximate preservation temperatures &amp; humidity</li> <li>8.3 AC systems used in shopping malls: Layout, piping, controls, refrigerants used, cost, plant capacity, etc.</li> <li>8.4 Refrigeration systems in Dairy plants &amp; mobile vans layout, plant capacity, components, refrigerants used, controls, pipings, insulations.</li> </ul> |

### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                                                                  |                   | Distribution Of Theory Marks |            |            |       |  |  |
|------------|----------------------------------------------------------------------------------|-------------------|------------------------------|------------|------------|-------|--|--|
| Unit<br>No | Title Of Unit                                                                    | Teaching<br>Hours | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |  |
| Ι          | Basics of Refrigeration                                                          | 6                 | 04                           | 06         | -          | 10    |  |  |
| Π          | Refrigeration Cycles                                                             | 12                | 02                           | 04         | 04         | 10    |  |  |
| III        | Refrigerants                                                                     | 6                 | 02                           | 04         | 00         | 06    |  |  |
| IV         | Equipment selection                                                              | 12                | 04                           | 04         | 04         | 12    |  |  |
| V          | Psychrometry                                                                     | 6                 | 02                           | 06         | 04         | 12    |  |  |
| VI         | Air- conditioning systems<br>Comfort conditions and cooling<br>load calculations | 8                 | 02                           | 04         | 04         | 10    |  |  |
| VII        | Air distribution systems                                                         | 6                 | 02                           | 04         | 02         | 08    |  |  |
| VIII       | Application and advances in refrigeration & air-conditioning                     | 8                 | 02                           | 02         | 08         | 12    |  |  |
|            | Total                                                                            | 64                | 20                           | 34         | 26         | 80    |  |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr. No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                                                                                                                                                                                                                                     | Hours |
|---------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Sr. No. | I,II | <ul> <li>a Demonstration of domestic refrigerator in View of construction, operation and controls used.</li> <li>b Study of various tools in refrigeration and air conditioning practice.</li> <li>c Demonstration of various controls like L.P./H.P. cut outs, thermostat, overload protector, solenoid valve used in RAC.</li> </ul> | 08    |
|         |      | d Study of vapour absorption refrigerator                                                                                                                                                                                                                                                                                              |       |

| 2 | IV   | <ul> <li>a Identification of components of 'hermetically sealed compressor' for its study after dismantling and assembly.</li> <li>b Trial on water cooler test rig.</li> <li>c Actual gas charging of Domestic freeze or Car AC with use of required tools.</li> </ul> | 08 |
|---|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 3 | IV   | . Dismantling & assembly of Reciprocating Refrigeration<br>Compressor                                                                                                                                                                                                   | 02 |
| 4 | VI   | Cooling load calculations for cabin, classrooms, laboratory, canteen and dairy plant, milk storage, small freezers (minimum one).                                                                                                                                       | 02 |
| 5 | VI   | <ul><li>a.Trial on A.C. test rig.</li><li>b.Study of Split Air conditioner by observing actual split<br/>AC</li></ul>                                                                                                                                                   | 04 |
|   | IV   | Trouble shooting of domestic refrigerator/window air                                                                                                                                                                                                                    | 00 |
| 6 | VI   | Conditioner.                                                                                                                                                                                                                                                            | 02 |
| 7 | VIII | Visits (any two) to central A.C. plant in view of ducting<br>system, insulation system and Air distribution system (e.g.<br>frozen food industry/ Cold storage /ice- cream industry/Ice<br>Plant/ Dairy Plant/ Shopping Mall AC plant                                   | 03 |
| 8 | VIII | Visit to repair and maintenance workshop in view of use of various tools.                                                                                                                                                                                               | 03 |
|   |      | TOTAL                                                                                                                                                                                                                                                                   | 32 |

### 8. SUGGESTED STUDENTS ACTIVITIES

Following is the list of proposed student activities like:

GPA

- 1. Prepare journals based on practical performed in laboratory.
- 2. Solve numerical problems.
- 3. Collect information from manufacturer's catalogue and traders regarding refrigeration systems.
- 4. Interact with owner and list common troubles cold storages and Ice plants.
- 5. Collect information from market regarding uses of refrigeration and air conditioning equipments.

- 6. Collect specifications of refrigerators, air conditioners and deep fridgers..
- 7. Enlist different brand names of air conditioners and refrigerators and their capacities.
- 8. Internet Survey of Refrigerators & AC.

### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

### **10. SUGGESTED LEARNING RESOURCE**

| Sr.<br>No. | Name of Book                          | Author                | Publication            |
|------------|---------------------------------------|-----------------------|------------------------|
| 01         | Refrigeration and Air<br>Conditioning | R.S.Khurmi            | S.Chand and Co         |
| 02         | Refrigeration and Air<br>Conditioning | Arrora and Domkundwar | Dhanpat Rai and Sons   |
| 03         | Refrigeration and Air<br>Conditioning | Manohar Prasad        | New Age Publications   |
| 04         | Refrigeration and Air<br>Conditioning | P.N.Ananthanarayanan  | Tata McGraw Hill       |
| 05         | Principles of<br>Refrigeration        | Roy Dossat            | Pearson Education      |
| 06         | Commercial<br>Refrigeration           | Edwin P. Anderson     | Taraporevala Sons & Co |
| 07         | Practical Refrigeration               | Audel                 | Taraporevala Sons & Co |

### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.<br>No. | Name of equipment                    | Brief specification           |
|------------|--------------------------------------|-------------------------------|
| 1.         | Water cooler test rig.               | As per industry specification |
| 2.         | A.C. test rig.                       | As per industry specification |
| 4          | Reciprocating refrigerant compressor | As per industry specification |
| 5          | Hermetically sealed compressor       | As per industry specification |
| 6          | Refrigeration test rig               | As per industry specification |
| 7          | Window air conditioner               | As per industry specification |

### 12. LEARNING WEBSITE & SOFTWARE

- a. <u>https://voltas.in</u>
- b. https://godrej.com
- c. <u>https://lg.com</u>
- d. https://samsung.com
- e. https://whirlpoolindia.com

## 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| Sr. | Course Outcome                                                                                                 |    |    |    |    | PO | Os |   |    |    |    | PS | Os |
|-----|----------------------------------------------------------------------------------------------------------------|----|----|----|----|----|----|---|----|----|----|----|----|
| No  |                                                                                                                |    |    |    |    |    |    |   |    |    |    |    |    |
|     |                                                                                                                | 1  | 2  | 3  | 4  | 5  | 6  | 7 | 8  | 9  | 10 | 01 | 02 |
| 1   | Describe types,<br>working principles and<br>construction of<br>Refrigeration and Air<br>Conditioning systems. | 03 | 03 | 03 | 02 | 01 | 01 | - | -  | 01 | 02 | 03 | 01 |
| 2   | Calculate performance<br>of refrigeration and air<br>conditioning system                                       | 02 | 03 | 03 | 02 | 01 | 01 | - | 01 | 01 | 02 | 01 | 01 |

| 3 | Enlist properties of<br>refrigerants, their<br>applications and<br>effects on<br>environment.    | 02 | 03 | 02 | 02 | 03 | 02 | 01 | -  | 02 | 02 | 01 | 2  |
|---|--------------------------------------------------------------------------------------------------|----|----|----|----|----|----|----|----|----|----|----|----|
| 4 | Identify various<br>components and<br>controls used in<br>refrigeration and air<br>conditioning. | 02 | 03 | 02 | 03 | 01 | 01 | -  | -  | 02 | 03 | 02 | 02 |
| 5 | Describe various<br>refrigeration & air<br>conditioning systems<br>and their applications.       | 02 | 03 | 03 | 03 | 02 | 02 | 01 | -  | 02 | 02 | 03 | 03 |
| 6 | Estimate cooling and heating loads.                                                              | 03 | 03 | 02 | 02 | 03 | 01 | 01 | 01 | 01 | 02 | 02 | 02 |

### **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                         |
|----------|-----------------------------|-------------------------------------------------------------------|
| 1        | R. N. Khadse                | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 2        | M. B. Sanap                 | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 3        | N.S.Khandgale               | Lecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad  |

(Member Secretary PBOS)

(Chairman PBOS)

## COURSE TITLEAUTOMOBILE ENGINEERINGCOURSE CODE6M413

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fifth                     |

### 1. RATIONALE

Automobile vehicles a now days are the inseparable part of modern life. The whole progress of the world is based on the development of modern automobiles. The diploma engineers must know about the principles of working, construction, maintenance of automobiles.. All the major global players in Automobile sector have launched their product in India. Automotive sector has major employment potential for diploma holders. Automobile servicing in particular offers good job opportunities at village, town & city level. This course in Automobile Engineering will make student understand & apply the knowledge about various system, subsystems & their inter-relationships.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"To understand different systems/sub-systems/components of the automobile vehicles with the view of maintenance and operation of the automobile".

| Teaching Scheme Total             |   |                          |   | Examination Scheme (Marks) |           |             |            |     |
|-----------------------------------|---|--------------------------|---|----------------------------|-----------|-------------|------------|-----|
| (Hours/ Credits)                  |   | Credits<br>(L+T+P) Theor |   | ory                        | Practical |             | Total      |     |
| L                                 | Т | Р                        | С | ESE                        | РТ        | ESE<br>(OR) | PA<br>(TW) | 150 |
| 4                                 | - | 2                        | 6 | 80                         | 20        | 25#         | 25         | 150 |
| Duration of the Examination (Hrs) |   |                          | 3 | 1                          |           |             |            |     |

#### 3. TEACHING AND EXAMNATION SCHEME

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; PR- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Differentiate various vehicle types and power generation options for automobiles..
- 2. Maintain the cooling, lubrication, ignition and fuel supply systems used in S.I and C.I engines.
- 3. Demonstrate major assemblies like clutch, gear box and differential.
- 4. Analyze electrical system and brake assembly.
- 5. Dismantle and assemble steering system and understand steering geometry.
- 6. Describe various tyres, suspension system and their maintenance

### 5. DETAILED COURSE CONTENTS

| Unit                                                         | Major Learning Outcomes<br>(Cognitive Domain Only)                                                                                                                                                                                                                                                                                                    | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                         |
|--------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit - I<br>Introduction of<br>Automobile                    | <ul> <li>1a. Give classification of automobile</li> <li>1b. Draw different vehicle layout</li> <li>1c. Explain frame &amp; frameless chassis</li> </ul>                                                                                                                                                                                               | <ul> <li>1.1 Classification of automobiles</li> <li>1.2 Vehicle layout &amp; types-Front engine<br/>rear wheel, Rear engine rear wheel,<br/>Front engine front wheel, Four wheel<br/>drive</li> <li>1.3 Chassis components</li> <li>1.4 Frame &amp; Frameless construction-</li> <li>1.5 Function, Types of frame.</li> </ul> |
| Unit - II<br>Auto Engine<br>Systems & Power<br>plant(Engine) | <ul> <li>2a. Give classification of engine</li> <li>2b. Draw &amp; explain different<br/>automobile power plant</li> <li>2c. Describe functions of<br/>different engine<br/>components.</li> <li>2d. Describe mixture<br/>requirement in petrol engine.</li> <li>2e. Demonstrate construction &amp;<br/>working of modern<br/>carburetors.</li> </ul> | <ul> <li>Power plant(Engine)</li> <li>2.1 Engine classification-According to no.<br/>of cylinders, arrangement of<br/>cylinders.</li> <li>2.2 Types of automobiles power plants-<br/>petrol, diesel, gas turbine, rotary<br/>piston<br/>engine, electric &amp; hybrid vehicle</li> </ul>                                      |

Automobile Engineering

|                    | 2f. Analyze MPFI system.         | 2.3 Engine components-construction,       |
|--------------------|----------------------------------|-------------------------------------------|
|                    | 2g. Describe mixture             | function & material - Cylinder block,     |
|                    | -                                | •                                         |
|                    | 1                                | cylinder head, crankcase, oil pans,       |
|                    | engine.                          | cylinder liners, gaskets, piston, piston  |
|                    | 2h. Analyze CRDI systems         | pin, piston rings, connecting rod,        |
|                    | 2i. Compare different cooling    | crankshaft, valve & valve mechanism,      |
|                    | systems.                         | timing gears, camshaft ,inlet &exhaust    |
|                    | 2j. Describe different           | manifold, exhaust muffler                 |
|                    | lubrication systems.             | Auto Engine Systems                       |
|                    |                                  | 2.4 Fuel feed system of petrol engine:    |
|                    |                                  | Mixture requirement in petrol engine,     |
|                    |                                  | modern carburettor, different systems     |
|                    |                                  | in carburetor, Solex carburetor, MPFI     |
|                    |                                  | system & its components                   |
|                    |                                  | 2.5 Fuel feed system of diesel engine:    |
|                    |                                  | Mixture requirement in diesel engine,     |
|                    |                                  | electrical pump, rotary fuel pump, fuel   |
|                    |                                  | injector, governors, glow plug,           |
|                    |                                  | common rail direct injection              |
|                    |                                  | system(CRDI), Types of nozzles,           |
|                    |                                  | 2.6 Cooling systems-Air cooling systems,  |
|                    |                                  | liquid pressurized systems &              |
|                    |                                  | components                                |
|                    |                                  | 2.7 Lubrication system- Different types   |
|                    |                                  | like splash & pressurized, Oil pumps,     |
|                    |                                  | filters, crankcase ventilation,           |
|                    |                                  | Lubricants and additives                  |
| Unit - III         | 3a. Describe construction of     | 3.1 Battery-principle & construction,     |
| Electrical Systems | battery                          | rating of battery, charging methods,      |
| ,                  | 3b. Select suitable battery      | maintenance free battery                  |
|                    | charging methods                 | , , , , , , , , , , , , , , , , , , ,     |
|                    | 3c. Distinguish various ignition | 3.2 Ignition system-construction &        |
|                    | systems                          | working of battery, magneto & electronic  |
|                    |                                  | ignition systems                          |
| Unit - IV          | 4a. Write necessity of clutch    | 4.1 Clutch- necessity, construction &     |
| Automobile         | 4b. Demonstrate construction &   | working of coil spring, diaphragm         |
| Transmission       | working of various clutch        | spring clutch, multi plate clutch         |
|                    | 4c. Write necessity of gear box  | 4.2 Gear box- Necessity, constant mesh    |
|                    | 4d. Compare various types of     | gear box, Synchromesh gear box,           |
|                    | gear box.                        | torque converter, overdrive               |
|                    | 4e. Give the importance of       | 4.3 Final drive- propeller shaft& joints, |

|                  | differential                     | action & need of differential,                                        |
|------------------|----------------------------------|-----------------------------------------------------------------------|
|                  | 4f. Give importance & working    | differential lock                                                     |
|                  | 1 0                              |                                                                       |
|                  | of automatic gear box            | 4.4 Axle- front axle& types of rear axle                              |
|                  |                                  | 4.5 Concept of automatic gear box                                     |
| Unit - V         | 5a. Draw & explain steering      | 5.1 Steering geometry-camber, castor,                                 |
| Steering Systems | geometry                         | king pin inclination, toe-in, toe-out,                                |
|                  | 5b. Describe various steering    | under steering, over steering, turning                                |
|                  | gear boxes                       | radius                                                                |
|                  | 5c. Justify the need of power    | 5.2 Steering Gear box- rack &pinion                                   |
|                  | steering                         | type, recirculating ball type, worm                                   |
|                  |                                  | & roller type                                                         |
|                  |                                  | 5.3 Wheel balance procedure                                           |
|                  |                                  | 5.4 Power steering (hydraulic &                                       |
|                  |                                  | electrical)                                                           |
| Unit – VI        | 6a. classify automotive brakes   | 6.1 Classification of brakes                                          |
| Brakes           | 6b. Compare various brakes       | 6.2 Principle construction & working of                               |
|                  | 6c. Analyze ABS in detail        | drum & disc brake                                                     |
|                  | ,                                | 6.3 Construction & working of hydraulic,                              |
|                  |                                  | air braking systems, power brakes                                     |
|                  |                                  | 6.4 Concept of anti-lock braking system.                              |
| Unit– VII        | 7a. Classify types of wheels and | Wheels tyres & Suspension                                             |
| Wheels Tyres &   | tyres.                           | 7.1 Types of wheels                                                   |
| Suspension       | 7b. Describe construction &      | 7.2 Tubeless tyre & radial ply tyre                                   |
|                  | working of various suspension    | 7.3 Types of suspension-rigid axle                                    |
|                  | system                           | suspension, independent suspension                                    |
|                  | 7c. Select suitable shock        | such as Macpherson strut, wishbone                                    |
|                  | absorber for automobile          | -                                                                     |
|                  |                                  |                                                                       |
|                  |                                  | shock absorber.                                                       |
|                  | absorber for automobile          | types, air suspension system<br>7.4 Telescopic hydraulic & gas filled |

### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

GPA

| Unit | Unit Title                                   | Teaching | Di         | Distribution of Theory Marks |            |             |  |  |  |
|------|----------------------------------------------|----------|------------|------------------------------|------------|-------------|--|--|--|
| No.  |                                              | Hours    | R<br>Level | U<br>Level                   | A<br>Level | Total Marks |  |  |  |
| Ι    | Introduction of Automobile                   | 06       | 02         | 02                           | 04         | 08          |  |  |  |
| II   | Auto Engine Systems &<br>Power plant(Engine) | 18       | 04         | 16                           | 04         | 24          |  |  |  |
| III  | Electrical systems                           | 08       | 02         | 02                           | 04         | 08          |  |  |  |
| IV   | Automobile Transmission                      | 08       | 02         | 04                           | 04         | 10          |  |  |  |
| V    | Steering Systems                             | 08       | 02         | 06                           | 02         | 10          |  |  |  |
| VI   | Brakes                                       | 08       | 02         | 06                           | 02         | 10          |  |  |  |
| VII  | Wheels Tyres & Suspension                    | 08       | 02         | 06                           | 02         | 10          |  |  |  |
|      | Total                                        | 64       | 16         | 42                           | 22         | 80          |  |  |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| S.<br>No. | Unit<br>No. | Practical Exercises<br>(Outcomes in Psychomotor Domain)                                         | Approx.<br>Hrs.<br>required |
|-----------|-------------|-------------------------------------------------------------------------------------------------|-----------------------------|
| 1         | Ι           | Demonstrate automobile chassis & locate different systems and components on the chassis         | 02                          |
| 2         | II          | Dismantle & assemble four stroke engine. Observe & sketch various components                    | 04                          |
| 3         | II          | Dismantle & assemble solex carburetor & observe different systems.                              | 02                          |
| 4         | II          | Demonstrate & analysis of MPFI system of car like Maruti,<br>Indica or Hyundai                  | 02                          |
| 5         | III         | Demonstration of Magneto ignition system of two wheeler<br>.Observe & sketch various components | 02                          |
| 6         | IV          | Demonstration of single plate coil spring & diaphragm spring type clutch                        | 02                          |
| 7         | IV          | Dismantle & assemble of synchromesh gear box.                                                   | 04                          |

| 8  | V   | Observe the steering system. Open the steering gear box and sketch the components.                                                                                                                                                                                                                                                         | 04 |
|----|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 9  | VI  | Observe & draw layout of hydraulically operated braking system.                                                                                                                                                                                                                                                                            | 02 |
| 10 | VII | Observe different suspension systems                                                                                                                                                                                                                                                                                                       | 02 |
| 11 |     | Visit to four- wheeler service station & prepare a report                                                                                                                                                                                                                                                                                  | 02 |
| 12 |     | <ul> <li>Mini project :-</li> <li>Collect following information from Internet/magazine/company manuals etc <ul> <li>a) New models of cars launched in last 3 years. Study modern features in these vehicles</li> <li>b) Safety devices in modern automobiles</li> <li>c) Pollution norms-Euro &amp; Bharat stage IV</li> </ul> </li> </ul> | 04 |
|    |     | Total                                                                                                                                                                                                                                                                                                                                      | 32 |

### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

Following is the list of proposed student activities:

- 1. Prepare journals based on assignments.
- 2. Prepare the models of various vehicles.
- 3. Observe the locations of various systems\components in the vehicle.
- 4. Observe the locations of various components of engines.
- 5. Visit to a small automotive service station.

### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

### 10. SUGGESTED LEARNING RESOURCE

| Sr No. | Title of Book                          | Author                           | Publication               |
|--------|----------------------------------------|----------------------------------|---------------------------|
| 1      | Automobile Engineering                 | Kirpal singh Vol I and<br>Vol II | Standard publications     |
| 2      | Automobile Engineering                 | R.B. Gupta,                      | Satya Prakashan New Delhi |
| 3      | Internal Combustion Engines            | Mathur and Sharma,               | Dhanpat rai and Sons      |
| 4      | Automotive Technology                  | H.M.Sethi                        | Tata McGraw hill          |
| 5      | Automobile Engineering                 | G.B.S. Narang                    | Khanna Publication        |
| 6      | High Speed Internal Combustion Engines | Ricardo                          | Dhanpat rai and Sons      |
| 7      | Automobile Engineering                 | K. K. Jain and R.B.<br>Asthana   | Tata McGraw hill          |
| 8      | Automobile Engineering                 | R.P.Sharma,S.CHAND               | Dhanpatrai & sons         |

### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.No. | Name of the Equipment                          | Specification                                                                                                         |
|--------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| 1      | Four stroke petrol engine.                     | As per specification                                                                                                  |
| 2      | Four stroke diesel engine.                     | As per specification                                                                                                  |
| 3      | Two stroke petrol engine.                      | As per specification                                                                                                  |
| 4      | Cut section medel of a car                     | As per specification                                                                                                  |
| 5      | Single plate clutch of a car                   | As per specification                                                                                                  |
| 6      | Solex carburetor.                              | As per specification                                                                                                  |
| 7      | MPFI system of car like Maruti ,Hundai, Indica | As per specification                                                                                                  |
| 8      | Battery and Magneto Ignition systems.          | As per specification                                                                                                  |
| 9      | Exhaust gas analyzer                           | Measures O2, CO, NOx (NO +<br>NO2 separate), SO2 – high<br>precision and long-term stable<br>Accuracy tolarance : 1 % |
| 10     | Steering system assembly                       | As per specification                                                                                                  |
| 11     | Brake system assembly                          | As per specification                                                                                                  |
| 12     | Model of suspension system                     | As per specification                                                                                                  |

### **12. LEARNING WEBSITE & SOFTWARE**

- a https://www.nptel.ac.in/courses
- b https://www.k12reader.com
- c. <u>https://www.eduaction.com</u>
- d. <u>https://www.k5learning.com</u>
- e. https://www.english4u.com

## 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| SNo | Course Outcome                                                                                               |   |   |   |   | PO | Os |   |   |   |    | PSOs |    |
|-----|--------------------------------------------------------------------------------------------------------------|---|---|---|---|----|----|---|---|---|----|------|----|
|     |                                                                                                              | 1 | 2 | 3 | 4 | 5  | 6  | 7 | 8 | 9 | 10 | 01   | 02 |
| 1   | Differentiate various<br>vehicle types and<br>power generation<br>options for<br>automobile's                | 2 | 3 | 2 | 2 | 1  | 1  | 1 | - | - | 1  | 2    | -  |
| 2   | Maintain the cooling,<br>lubrication, ignition<br>and fuel supply<br>systems used in S.I<br>and C.I engines. | 1 | 2 | 2 | 3 | 1  | 2  | 1 | 1 | - | 2  | 2    | 2  |
| 3   | Demonstrate major<br>assemblies like clutch,<br>gear box and<br>differential.                                | 2 | 2 | 2 | 2 | 1  | 1  | 1 | - | 1 | 1  | 2    | -  |
| 4   | Analyze electrical<br>system and brake<br>assembly                                                           | 2 | 3 | 2 | 3 | 2  | 1  | - | - | - | 2  | 2    | 1  |
| 5   | Dismantle and<br>assemble steering<br>system and understand<br>steering geometry.                            | 2 | 2 | 2 | 3 | 1  | -  | - | 1 | - | 1  | 1    | -  |
| 6   | Describe various tyres,<br>suspension system and<br>their maintenance                                        | 2 | 3 | 2 | 2 | 3  | 1  | 1 | 2 | 1 | 2  | 3    | 2  |

### **Course Curriculum Design Committee**

| Sr | Name of the faculty | Designation and Institute |
|----|---------------------|---------------------------|
| No | members             |                           |

- 1 Prof. V. B. Kumawat Lecturer in Mechanical Engineering Department
- 2 Prof.N.S..Khandagale Lecturer in Mechanical Engineering Department

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLE3 D MODELINGCOURSE CODE6M405

### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Fifth                     |

### 1. RATIONALE

Rapid development of Technology and competitive economy, demands frequent changes in product design to suit the customer's needs. Computers play very important role in modeling any complex part and incorporating frequent changes as per customer requirements and further which can be extended up to CAM, CIM ,PLM and simulation etc.

Moreover, today's market is compelling design/consulting engineering firms and manufacturing companies to seek CAD conversion of their existing paper based engineering documents. Hence it is essential for a Diploma Technician to have a skill in operating different 3 D modeling software's practiced in Industry such as Pro-E, Catia, SolidWorks, SolidEdge, Autodesk Inventor etc.

The focus of this course is to provide the students with hands-on experience in developing 3D models, assemblies & producing Industrial production drawings and also making them competent in latest solid modeling and assembly practices.

### 2. COMPETENCY

"Develop 3 D part models & assemblies of Mechanical systems and prepare its Production drawings using any <mark>3 D Modeling</mark> software.

### 3. TEACHING AND EXAMNATION SCHEME

| Teaching SchemeTotalCredits       |           |          |         | Examination Scheme (Marks) |    |             |            |    |
|-----------------------------------|-----------|----------|---------|----------------------------|----|-------------|------------|----|
| (                                 | (Hours/ C | credits) | (L+T+P) | Theory Practical           |    | ical        | Total      |    |
| L                                 | Т         | Р        | С       | ESE                        | РТ | ESE<br>(PR) | PA<br>(TW) |    |
| 1                                 | -         | 2        | 3       |                            |    | 25#         | 50         | 75 |
| Duration of the Examination (Hrs) |           |          |         |                            |    |             |            |    |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; PR- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. To draw sketches using appropriate constraints.
- 2. To develop 3 D part models by using various feature tools.
- 3. To develop assembly from 3 D part models by applying various mating constraints.
- 4. To prepare production drawings from 3 D part models & assemblies.

### 5. DETAILED COURSE CONTENTS

| Unit                                                                           | Major Learning Outcomes                                                                                                                                                                                                                                          | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                | (Cognitive Domain Only)                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                          |
| Unit –I<br>Introduction to<br>GUI <mark>( Any 3 D</mark><br>Modeling software) | <ul> <li>1a. Know the various tool bars<br/>and various commands for<br/>sketching, view, feature<br/>annotation etc.</li> <li>1b. Understand the use of<br/>property manager, feature<br/>manager, design manager<br/>and configuration<br/>manager.</li> </ul> | <ol> <li>1.1 Tool bars: Standard Toolbar, Sketch<br/>Toolbar, Relationship Toolbar, View<br/>Toolbar, Drawing Toolbar, Feature<br/>Toolbar and Annotation Toolbar.</li> <li>1.2 Feature Manger Design Tree: Design<br/>Manager, Property Manager, and<br/>Configuration Manager.</li> <li>1.3 Selection Method: Selection from<br/>design Tree, Graphic Area.</li> </ol> |
| Unit– II                                                                       | 2a. Understand the sketching,                                                                                                                                                                                                                                    | 2.1 Sketch Plane, grid, units, edit and                                                                                                                                                                                                                                                                                                                                  |
| Sketching                                                                      | <ul> <li>2d. Onderstand the sketching,<br/>editing and modification of<br/>sketch.</li> <li>2b. Knowing how to add<br/>relations, dimensions,<br/>aligned, angular, and<br/>circular sketches</li> </ul>                                                         | <ul> <li>2.1 Sketch Flate, gird, units, call and<br/>modify sketch.</li> <li>2.2 Sketch relations: Adding and<br/>changing geometric relations</li> <li>2.3 Dimensioning: Vertical,<br/>horizontal, aligned, angular,<br/>circular sketches.</li> <li>2.4 Reference Geometry:<br/>Creating axis, creating reference<br/>planes</li> </ul>                                |

| Unit– III        | 3a. Understand the concept of                         | 3.1 Creating Features such as extrude,                                  |
|------------------|-------------------------------------------------------|-------------------------------------------------------------------------|
|                  | creating features and                                 | Cut Extrude, Holes, Revolve,                                            |
| Part Modeling    | modify a feature by means                             | Shell, Loft, Sweep,                                                     |
|                  | of various tools.                                     | 3.2 Modifying a feature using draft,                                    |
|                  | 3b. Understand how to create                          | Fillet, Chamfer, and Hole Wizard.                                       |
|                  | feature patterns through                              | 3.3 Creating Feature Pattern: Circular                                  |
|                  | sketches.                                             | Pattern, Rectangular Pattern,                                           |
|                  | sketches.                                             | Through Sketch                                                          |
| Unit– IV         | 4a. Understand the use of                             |                                                                         |
|                  | design tree for feature                               | 4.1 Feature Manager Design Tree,<br>Editing a Feature definition,       |
| Editing and      | definition and editing.                               | 4.2 Editing sketch of the part model,                                   |
| modifying a part | e e                                                   |                                                                         |
| model            | 4b. Learn to use editing the sketch of a part model   | Move and copy Features,<br>4.3 Suppress, Rollback, Part color,          |
|                  | 4c. Learn how to the various                          | Mass properties.                                                        |
|                  | tools to suppress, rollback,                          | mass properties.                                                        |
|                  | change color and mass                                 |                                                                         |
|                  | properties.                                           |                                                                         |
| Unit - V         | 5a. Know the conventions in                           | 5.1 Assembly Toolbar, Feature                                           |
| Unit - v         |                                                       | •                                                                       |
| Assembly         | feature manager design<br>tree and understand its use | Manager design tree conventions,<br>5.2 Mate components, align,         |
| -                |                                                       |                                                                         |
|                  | •                                                     | concentric, parallel.                                                   |
|                  | components.<br>5b. Know and understand the            | 5.3 Calling part model into assembly from library                       |
|                  |                                                       | Hom norally                                                             |
|                  |                                                       |                                                                         |
|                  | assembly modeling<br>5c. Know the procedure of        |                                                                         |
|                  | -                                                     |                                                                         |
|                  | calling a part model from                             |                                                                         |
| Unit – VI        | the library.                                          | 6.1 Creating Drawings: standard                                         |
| Omt - VI         | 6a. Know the different types                          | e e                                                                     |
| Drawing          | of standard templates and<br>use them to create       | templates, Sheet setup,                                                 |
|                  |                                                       | 6.2 Adding drawing views: standard three views, Sectional views,        |
|                  | drawings<br>6b. Learn how to add different            | , , , ,                                                                 |
|                  | orthographic views on a                               | auxiliary views, detailed views.<br>6.3 Annotations: adding dimensions, |
|                  | drawing sheet.                                        | C A                                                                     |
|                  | 6c. Know and understand the                           |                                                                         |
|                  | feature to be added like                              | Material,<br>6.4 Page Setup Print selection print                       |
|                  |                                                       | 6.4 Page Setup, Print selection, print                                  |
|                  | dimensions, center marks, bill of material etc.       | preview, and Print a document                                           |
|                  |                                                       |                                                                         |
|                  | 6d. Understand the procedure                          |                                                                         |

| of printing and plotting a part or assembly drawing. |  |
|------------------------------------------------------|--|
|                                                      |  |

### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                                    |                   | Dist       | ribution O | f Theory N | Marks |
|------------|----------------------------------------------------|-------------------|------------|------------|------------|-------|
| Unit<br>No | Title Of Unit                                      | Teaching<br>Hours | R<br>level | U<br>Level | A<br>Level | TOTAL |
| Ι          | Introduction to GUI (Any 3 D<br>Modeling software) | 02                |            |            |            | NA    |
| II         | Sketching                                          | 03                |            |            |            | NA    |
| III        | Part modeling                                      | 03                |            |            |            | NA    |
| IV         | Editing and modifying a part model                 | 03                |            |            |            | NA    |
| V          | Assembly                                           | 03                |            |            |            | NA    |
| VI         | Drawing                                            | 02                |            |            |            | NA    |
|            | Total                                              | 16                |            |            |            | NA    |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                                                | Hours |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | II   | Draw the sketches of the machine parts (Any Three from given set)                                                                                 | 04    |
| 2          | III  | Creating parts using features extrude, cut, rib, revolve, chamfer, fillet (Any Three from given set)                                              | 06    |
| 3          | III  | Creating parts using, sweep, loft, draft. (Any Two from given set)                                                                                | 06    |
| 4          | IV   | Part modeling using reference axis and planes, editing and<br>modifying the parts, patterns circular and rectangular. (Any<br>Two from given set) | 04    |

| 5 | V  | Creating assemblies of the parts designed. (Any one from given set)                            | 04 |
|---|----|------------------------------------------------------------------------------------------------|----|
| 6 | VI | Creating drawing views of the parts (Any Two from Unit no. I to IV) and the assembly. (Unit V) | 04 |
| 7 | VI | Plotting the Drawings with dimensions and annotations                                          | 04 |
|   |    | TOTAL                                                                                          | 32 |

### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular students activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- 1. Prepare journals based on practical's performed in laboratory.
- 2. Carry out market survey for various <mark>3 D modeling</mark> software's used in industry.
- 3. Analyze the specifications, costs, quality and limitations for various types of 3 D modeling software's.
- 4. Collect the information about the features of various <mark>3 D modeling</mark> software's.
- Collect the specifications of printers & plotters of different manufacturer required for CAD work/job
- 6. Search online PPT's, PDF's, and videos on the use of CAD/CAM software's used in industry.

### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- Arrange visits to industries and demonstrate various software's used in 3 D modeling and assembly modeling.
- b. Motivate students to use the software's available and prepare the models for a given assembly.
- c. Arrange expert lectures of suppliers of various software's available in the market.
- d. Q & A technique.
- e. Activity based learning.

### **10. SUGGESTED LEARNING RESOURCE**

| Sr.<br>No. | Name of Book                                                   | Author        | Publication                                                  |
|------------|----------------------------------------------------------------|---------------|--------------------------------------------------------------|
| 1.         | 3 D Modeling using Solid<br>Works                              | -             | Lab Manual Developed by G. P.<br>Aurangabad                  |
| 2.         | CATIA V5R14 for<br>Designers                                   | Sham Tickoo   | Softcover, Cadcim Technologies<br>(ISBN No 1-932709-08-8)    |
| 3          | Pro/Engineer Wildfire for<br>Designers                         | Sham Tickoo   | Softcover, Cadcim Technologies<br>(ISBN No 1-932709-03-7)    |
| 4          | Solid Works For<br>Designers Release 2004                      | Sham Tickoo   | Softcover, Cadcim Technologies<br>(ISBN No 0-9663537-9-X)    |
| 5          | Autodesk Inventor for<br>Designers: Release 10                 | Sham Tickoo   | Softcover, Cadcim<br>Technologies(ISBN No 1-932709-<br>09-6) |
| 6          | Engineering Analysis and<br>Optimization using CAD<br>software | Chougule N.K. | SCITECH publications (ISBN No<br>9789385983245)              |

| Sr.<br>No. | Name of equipment            | Brief specification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------|------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.         | PCs -20 Nos. with networking | <ul> <li>O.S.: Windows 7 64-bit 4GB or higher</li> <li>CPU: Intel Pentium (4, M, D) Intel Xeon Intel</li> <li>Celeron Intel Core AMD Athlon AMD Opteron</li> <li>Note: Single-, dual- and quad-core processors</li> <li>are supported.</li> <li>RAM: 4 GB</li> <li>Browser: Internet Explorer 9.0 and later, and</li> <li>Mozilla Firefox 10.0.1 and later.</li> <li>Monitor: 1280 x 1024 (or higher) resolution</li> <li>support with 24-bit or greater color</li> <li>Network: Microsoft TCP/IP Ethernet Network</li> <li>Adapter</li> <li>Mouse: Microsoft-approved 3-button mouse</li> </ul> |
| 2.         | CAD/CAM software             | 20 seats of latest software such as SolidWorks<br>/Pro-E/SolidEdge/Mechanical Inventor etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3.         | Plotter                      | 01- As per make specification preferably HP.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

#### **12. LEARNING WEBSITE & SOFTWARE**

- a. https://www.solidworks.com/sw/products/3d-cad/packages.htm
- b. http://www.3ds.com/products-services/solidworks/
- c. https://www.youtube.com/user/solidworks
- d. https://www.solidworks.com/sw/resources/solidworks-tutorials.htm
- e. http://www.solidworkstutorials.com/
- f. http://www.solidworks.in/sw/docs/Student\_WB\_2011\_ENG.pdf
- g. http://globalsite.solidworks.com/files/2008\_2009-advanced-modeling-workbook\_lr-1.pdf
- h. https://www.youtube.com/watch?v=6glpCzXvCbw
- i. https://www.ptcusercommunity.com/thread/32015
- j. http://www.econocap.com/userData/econocap/doc/installproe.pdf
- k. http://www.ptc.com/community/landing/wf3.htm
- 1. http://www.proetutorials.com/FreeTutorials.htm

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| SNo | Course Outcome                                                                            |   | POs |   |   |   |   | PSOs |   |   |    |    |    |
|-----|-------------------------------------------------------------------------------------------|---|-----|---|---|---|---|------|---|---|----|----|----|
|     |                                                                                           | 1 | 2   | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 01 | 02 |
| 1   | To draw sketches<br>using appropriate<br>constraints.                                     | - | 3   | 3 | 2 | - | - | -    | 3 | 2 | 2  | -  | 2  |
| 2   | To develop 3 D part<br>models by using<br>various feature tools.                          | - | 3   | 3 | 2 | - | - | -    | 3 | 2 | 2  | -  | 2  |
| 3   | To develop assembly<br>from 3 D part models<br>by applying various<br>mating constraints. | 1 | 3   | 3 | 3 | 2 | 1 | 1    | 3 | 2 | 3  | 3  | 3  |
| 4   | To prepare production<br>drawings from 3 D<br>part models &<br>assemblies.                | 1 | 3   | 3 | 3 | 2 | 1 | 1    | 3 | 2 | 3  | 3  | 3  |

### **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                              |
|----------|-----------------------------|------------------------------------------------------------------------|
| 1        | V.M.Bukka                   | Lecturer in Mechanical Engg. Department, Govt. Polytechnic, Aurangabad |
| 2        | S.B.Kulkarni                | Lecturer in Mechanical Engg. Department, Govt. Polytechnic, Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLESEMINARCOURSE CODE6M501

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |  |  |  |  |
|---------------------------------------------------|---------------------------|--|--|--|--|
| Mechanical                                        | Fifth                     |  |  |  |  |

#### 1. RATIONALE

A technician is responsible for handling various resources like Man, Material, Machine and, proper maintenance of different Mechanical machines in various areas of Mechanical engineering. While working in the industry a technician is employed for planning, preparation, supervision, and quality control. Arrangement and handling of materials, labours and equipment's are also the role of a technician. Seminar will help in enhancing the knowledge & skills of the technicians in recent advancements in Mechanical Engineering and also improves presentation and communication skills.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Handle human resources and communicate effectively in Mechanical Engineering profession."

#### 3. TEACHING AND EXAMNATION SCHEME

| Т  | Teaching Scheme<br>(Hours/ Credits) |   | Total              | Examination Scheme (Marks) |        |      |           |    |  |  |  |
|----|-------------------------------------|---|--------------------|----------------------------|--------|------|-----------|----|--|--|--|
|    |                                     |   | Credits<br>(L+T+P) | Theo                       | Theory |      | Practical |    |  |  |  |
| T  | т                                   | Р | С                  | ESE                        | РТ     | ESE  | PA        |    |  |  |  |
|    | 1                                   | 1 | C                  | LOL                        | 11     | (OR) | (TW)      | 75 |  |  |  |
| -  | -                                   | 2 | 2                  |                            |        | 50@  | 25        | 15 |  |  |  |
| Du | Duration of the Examination (Hrs)   |   |                    |                            |        |      |           |    |  |  |  |

**Legends : L**-Lecture; **T**-Tutorial/Teacher Guided Theory Practice ; **P**- Practical; **C**- Credits; **ESE**- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Student should become professionally competent.
- 2. Possess effective communication and presentation skills.
- 3. To create awareness about latest technological aspects.
- 4. To improve skills related to searching on internet.
- 5. To realize importance of basic technological aspects.

#### 5. DETAILED COURSE CONTENTS

Student studying in Final year Mechanical Engineering program has to select topic for seminar presentation of his/her interest under guidance of teaching faculty members, which shall be finalized by guide and approved by concerned Head of department.

- 1 Student has to prepare and submit short (One Page) abstract of the selected seminar topic. Further guidance shall be give the allotted faculty members.
- 2 Finally the students shall prepare the report of his seminar under the guidance of the teaching staff members (Maximum 35 pages) which may consists of observations, drawings, sketches, sample calculations / simple designs, processes, procedures, applications, managements, and costing aspects if necessary.
- 3 Student should deliver a seminar for 10 to 15 minutes preferable by ppt / model / charts etc. of his selected topic followed by question and answer session of 5 minutes.

4 Evaluation will be done on the basis of Seminar topic, contents, communication presentation skills and response to questions asked at the end of presentation.

| Sr. | Unit No. | Practical Exercises                                         | Approx. Hrs. |
|-----|----------|-------------------------------------------------------------|--------------|
| No. |          | (Outcomes in Psychomotor Domain)                            | required     |
|     |          | Term work                                                   | 04           |
| 1   | 1        | Identify the topic related to Mechanical Engineering field/ |              |
|     |          | construction industry.                                      |              |
| 2   | 2        | Literature survey                                           | 08           |
|     |          | And                                                         |              |
|     |          | Analysis of data collected.                                 |              |
| 3   | 3        | Identify methodology, do comparative study of various       | 08           |
|     |          | methods, identify related case study.                       |              |
| 4   | 4        | Preparing rough draft along with collected drawings. maps   |              |
|     |          | and designs / calculations or tables etc.                   | 04           |

#### 6. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| 55Prepare Final draft with attachments.<br>Binding and term work completion.04 |                                                              |  |  |  |  |  |
|--------------------------------------------------------------------------------|--------------------------------------------------------------|--|--|--|--|--|
| 6                                                                              | 6 6 Presentation in presence of guide and external examiner. |  |  |  |  |  |
|                                                                                | Total Hours. 32 hrs                                          |  |  |  |  |  |

# 7. SUGGESTED STUDENTS ACTIVITIES

#### I) Aspects to be considered for report writing

- To study recent developments and technological advances in Mechanical Engineering field.
- Develop the Entrepreneurial skills.
- Develop communication skills.
- To enhance the presentation skills
- Seminar reports preparations & cost analysis,

# **II) SUGGESTED AREAS FOR THE SEMINAR FOR MECHANICAL ENGINEERING PROGRAMME:**

| SR.<br>NO | AREA OF<br>MECHANICAL<br>ENGINEERING | SUGGESTED TOPICS                                                        |
|-----------|--------------------------------------|-------------------------------------------------------------------------|
| 1         | Materials                            | Smart materials.                                                        |
|           |                                      | Materials used for aero-space mfg. industry.                            |
|           |                                      | Materials used for marine industry.                                     |
|           |                                      | engg. Application of non-ferrous & ferrous materials.                   |
|           |                                      | Heat treatment of materials                                             |
|           |                                      | Application of nonmetals.                                               |
|           |                                      | Manufacturing of steels.                                                |
|           |                                      | Powder metallurgy.                                                      |
| 2         | Mechanical<br>Engg.<br>Components.   | bearings, couplings, shafts ,springs, gaskets. Heat exchanger, filters. |
| 3         | Theory of                            | Vibration, cams & followers.                                            |
|           | machines                             | Mechanisms.                                                             |
| 4         | Fluid mechanics techniques           | Advance flow measuring techniques.                                      |

| 5  | Measurement and control.     | Study of various controllers.<br>Advanced measurement technique.                                                                                                                                                                                                                                                                                                            |
|----|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6  | Manufacturing/<br>Tool Engg. | Advanced welding techniques, CNC machines, SPM non-<br>conventional machining processes., advanced cutting tool materials,<br>advanced jigs and fixtures ,advanced manufacturing systems.                                                                                                                                                                                   |
| 7  | Quality<br>management        | TQM,TPM,5'S,Kaizen,Six-sigma,quality,JIT,kanban,poka<br>yoke,cellular mfg system circle, lean mfg. agile manufacturing,<br>CMM                                                                                                                                                                                                                                              |
| 8  | Thermal field                | Compressors turbine ,jet propulsion, rocket propulsion ,power plant,<br>fuel cells, cold storage, ice plant AC system of commercial building.,<br>refrigeration & air conditioning service/maintenance & tools, energy<br>conservation, solar energy, wind, geothermal, biomass energy.                                                                                     |
| 9  | Mechatronics                 | Sensors, Automation, Robotics.                                                                                                                                                                                                                                                                                                                                              |
| 10 | Automobile                   | Lubricants & additives, coolants, power-steering, MPFI,CRDI<br>system, vehicle testing, automobile sensors, environmental pollution<br>control, alternative fuels ,automobile safety, maintenance free<br>battery, wheel alignment and balancing,anti-lock braking system,<br>independent suspension system, LPG, CNG,hybrid vehicles, aqua<br>vehicles.Automatic gear box, |

# 8. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

- 1. Do literature survey and identify area of interest for seminar preparation.
- **2.** Visit the site if required.
- 3. Search on internet for information gathering.
- 4. Prepare sketches, layouts in AUTOCAD if required.
- 5. Collect drawings and prepare estimates if needed.
- 6. Do comparative study of methods, identify case study etc
- 7. Prepare report of seminar as per above instructions.
- 8. Prepare power point presentation of Seminar topic.

#### SEMINAR REPORT FORMAT

- 1. Seminar report shall be in the print form on A-4 size white bond paper.
- 2. Typing shall be in Times New Roman with spacing of 1.5 using one side of paper.
- 3. Margins: Left = 37.5 mm Right, Top and Bottom = 25mm.
- 4. Front page : Titles TNR 18 bold , other TNR 14 bold. With Institute Logo.
- 5. Inner Pages : Titles –TNR 14 Bold , other TNR 12 .
- 6. Page Nos :Should appear on the right hand top corner of each page starting after index page.
- 7. Tables to be preferable in the Text format only.
- 8. Sketches to be drawn on separate sheet / pages in black ink .
- 9. The Last content in the index to be of references. Acknowledgement to be added in the report.
- 10. Binding: Spiral binding is preferred for the seminar report. The number of copies are to be prepared by the student are 3 nos. (Student + Guide + Department copy)

#### 9. SUGGESTED LEARNING RESOURCE

#### Visit to institute library to find the related text books.

| Sr. No | Title of Book                     | Author              | Publication       |  |  |  |
|--------|-----------------------------------|---------------------|-------------------|--|--|--|
| 1      | As per industry details / area of | Related reference   | Under guidance of |  |  |  |
|        | Seminar                           | books / I.S. codes, | faculty members.  |  |  |  |
|        |                                   | Hand books etc      |                   |  |  |  |

#### 10. Major Equipment/ Instrument with Broad Specifications

- 1. Demonstrations / Explanations in industry by experts and faculty.
- 2. Observations and collections from field

#### **11. Learning Websites**

Search on WEB for related construction sites. Take guidance from faculty members.

#### **12. LEARNING WEBSITE & SOFTWARE**

1.<u>www.google.com</u> 2.<u>www.youtube.com</u> Websites related to seminar topic

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

|                |                                                                          | Programe Out comes |       |         |         |        |        |        |        |        |        |        | SO    | No.<br>of<br>hours                 |
|----------------|--------------------------------------------------------------------------|--------------------|-------|---------|---------|--------|--------|--------|--------|--------|--------|--------|-------|------------------------------------|
| CO.<br>NO.     | Course Outcome                                                           | 1                  | 2     | 3       | 4       | 5      | 6      | 7      | 8      | 9      | 10     | 1      | 2     | alloca<br>ted in<br>curric<br>ulum |
| 1              | Student should<br>become<br>professionally<br>competent.                 |                    | 3     |         | 3       |        |        |        |        |        |        |        | 2     | 06                                 |
| 2              | Possess effective<br>presentation and<br>communication skills.           |                    | 1     |         |         |        |        |        |        |        |        |        | 2     | 06                                 |
| 3              | To create awareness<br>about latest<br>technological aspects.            |                    | -     | 3       | 3       |        |        |        | 1      |        |        | 1      |       | 08                                 |
| 4              | To improve skills<br>related to searching<br>information on<br>internet. |                    | 2     | 3       |         |        |        |        |        |        |        | 2      | 2     | 04                                 |
| 5              | To realize importance of basic technologies.                             |                    | 3     |         |         |        |        |        | 2      |        |        | 2      | 2     | 08                                 |
| C<br>Sr.<br>No | Course Curriculum Desi<br>Sr. Name of the faculty                        |                    |       | nittee  | e       | De     | esigna | tion a | und Iı | nstitu | ite    |        |       |                                    |
| 1.             | Smt.J.S.Patil                                                            | Hea                | ad o  | f Dep   | oartme  | ent Ci | ivil E | ngg. ( | Govt.  | Poly   | techn  | nic, A | uran  | gabad.                             |
| 2.             | Shri. Y.N.Shaikh                                                         | Lec                | eture | er in ( | Civil I | Engin  | eerin  | g, Go  | vt. Po | olyte  | chnic, | Aura,  | angab | ad                                 |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEINDUSTRIAL ORGANIZATION AND MANAGEMENTCOURSE CODE6G305

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |  |  |  |  |
|---------------------------------------------------|---------------------------|--|--|--|--|
| ME/EE/CE/AE/ET/CO/IT                              | Fifth / Sixth             |  |  |  |  |

#### 1. RATIONALE

Diploma graduate works at middle management level in the industries/engineering organizations. Therefore he has to be proficient in planning, organizing & coordinating various activities of industries/ organizations or when he is required to work in different types of projects. They are also expected to deal with workforce and management problems. In the present era of competition, optimum utilization of the resources with achieving higher productivity is essential for any industry to survive. Quality and cost controls are also other important factors which contribute to the day to day supervision issues. This course aims to deal effectively with such issues along with familiarization of acts and laws applied to industries.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Plan, organize and Coordinate various activities/ processes in industry/projects by ensuring optimal use of resources"

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Total |                             | Examination Scheme (Marks) |                    |               |    |                  |            |         |  |       |
|----------------|-----------------------------|----------------------------|--------------------|---------------|----|------------------|------------|---------|--|-------|
|                | eme (F<br>Credit            |                            | Credits<br>(L+T+P) | Theory        |    | Theory Practical |            | Practic |  | Total |
| L              | Т                           | Р                          | С                  | ESE PT        |    | ESE@<br>(PR/OR)  | PA<br>(TW) |         |  |       |
| 03             |                             | 02                         | 05                 | 80 20         |    | -                | 25         | 125     |  |       |
|                | Duration of the Examination |                            |                    | 02            | 01 |                  | -          | 120     |  |       |
|                |                             | (Hrs)                      |                    | (Online Exam) |    |                  |            |         |  |       |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR –Oral Examination, TW - Term. Work, # External, @ Internal,~ Online Examination.

# 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Identify the different sector and industry of given company name.
- 2. Plan, organize and Coordinate various activities in industry or a project.
- 3. Ensure proper management of human resources.
- 4. Identify the need of finance and its optimal use in an organization.
- 5. Manage materials & stores.
- 6. Apply PERT/CPM method for project scheduling of given project
- 7. Apply marketing strategies to promote the sales & services.

# 5. DETAILED COURSE CONTENTS

| Unit                                                                                       | Major Learning Outcomes                                                                                                                                                                                                                                                                                                                                                                      | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                            | (in cognitive domain)                                                                                                                                                                                                                                                                                                                                                                        | (Containing POs and PSOs assignment in each<br>Sub-topic)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit – I<br>Business<br>overview<br>Unit - II<br>Evolution of<br>Scientific<br>Management. | <ul> <li>1a Classify businesses.</li> <li>1b Outline the impact of<br/>Globalization and IPR on business.</li> <li>1c Identify&amp; need of e-commerce.</li> <li>2a Outline the historical perspective<br/>of management.</li> <li>2b Identify the functions of<br/>management.</li> <li>2c Develop organization structure.</li> <li>2d Select appropriate form of<br/>ownership.</li> </ul> | <ol> <li>Type of sectors. Service, Manufacturing,<br/>Trade.</li> <li>Globalization and IPR- Introduction,<br/>Advantage and Disadvantage w.r.t India.</li> <li>e - Commerce: Merits and Demerits.</li> <li>I Evolution of management thoughts.</li> <li>Definition of management, Levels of<br/>management.</li> <li>Scientific management by F W Taylor.</li> <li>Administration Vs. Management</li> <li>Henry Fayol's 14 Principles of<br/>management.</li> <li>Gruntions of management - Planning,<br/>Organizing, Staffing, Directing &amp;<br/>controlling</li> <li>Types of organization- Line, Line &amp;<br/>Staff, Functional &amp; Project.</li> <li>R Centralization and Decentralization.</li> <li>Porms of Ownership- Proprietorship,<br/>Partnership, Joint Stock Company, Co-<br/>operative society &amp; Government Sector.</li> </ol> |
| Unit –III<br>Personnel<br>Management<br>& Legislative<br>Act.                              | <ul> <li>3a Identify &amp; develop human</li> <li>resource</li> <li>3b Apply strategies of motivation.</li> <li>3c Practice safety procedure</li> <li>3d Identify the features of industrial</li> </ul>                                                                                                                                                                                      | <ul> <li>3.1 Definition, Objectives and Function of<br/>Personnel management</li> <li>3.2 Recruitment &amp; Selection Procedure</li> <li>3.3 Training &amp; its type: Induction, Skill<br/>Enhancement &amp; Motivational Training.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

|            | acts.                                 | 3.4 Leadership & its styles.                                          |
|------------|---------------------------------------|-----------------------------------------------------------------------|
|            |                                       | 3.5 Motivation-Definition, its type &                                 |
|            |                                       | Maslow Theory                                                         |
|            |                                       | 3.6 Safety management: Causes of Accident                             |
|            |                                       | and Safety procedure                                                  |
|            |                                       | 3.7 Salient Features of (Introduction,                                |
|            |                                       | Objective, Scope, Important definition &                              |
|            |                                       | Related provision)                                                    |
|            |                                       | 1 Indian Factory act 1948.                                            |
|            |                                       | 2 Industrial dispute acts 1947.                                       |
|            |                                       | 3 Workmen compensation act 1923.                                      |
|            |                                       | 4 The employees state insurance                                       |
|            |                                       | Act 1948.                                                             |
|            |                                       | 5 Contract Labour Act.                                                |
| Unit- IV   | 4a Identify sources of finance        | 4.1 Objectives & Functions of financial                               |
|            |                                       | management.                                                           |
| Financial  | 4b Prepare budget.                    | 4.2 Capital, Types of Capitals-Fixed &                                |
| Management |                                       | Working Capital                                                       |
|            | 4c Acquaint with prevailing taxation  | 4.3 Direct Cost & Indirect Cost                                       |
|            | policy.                               | 4.4 Sources of raising Capital- Internal &                            |
|            |                                       | External sources.                                                     |
|            |                                       | 4.6 Introduction of budget & budgetary                                |
|            |                                       | control.                                                              |
|            |                                       | 4.7Production Budget (including Variance                              |
|            |                                       | Report)                                                               |
|            |                                       | 4.8Labour Budget                                                      |
|            |                                       | 4.9Introduction to Profit & Loss Account<br>(only concepts)           |
|            |                                       | 4.10Introduction of Income Tax & GST                                  |
|            |                                       | (Good & Service Tax)                                                  |
| Unit - V   | 5a. Plan Inventory for processes.     | 5.1 Objective and function of material                                |
|            | 5b. Calculate EOQ.                    | management.                                                           |
| Materials  | 5c. Practice purchase procedure.      | 5.2 Inventory – Concept, its Classification &                         |
| Management | i ritation de                         | Objective.                                                            |
|            |                                       | 5.3 Economic Order Quantity (EOQ) -                                   |
|            |                                       | Concept & Graphical Representation.                                   |
|            |                                       | 5.4 ABC Analysis- Definition & Step of                                |
|            |                                       | ABC Analysis.                                                         |
|            |                                       | 5.5 Purchase Procedure                                                |
|            |                                       | 5.6 Overview of ERP, JIT, 5's, Kaizen& six                            |
| Unit -VI   | 60 Llos CDM/DEDT for project          | sigma (Introduction, Objective & Benefit).                            |
| UIII - VI  | 6a Use CPM/PERT for project           | 6.1 Introduction of Project Management,                               |
| Project    | scheduling for execution.             | project Network Analysis<br>6.2 Concept and introduction of CPM/PERT. |
| 110,000    | 6b Track the project with the help of | 6.3 Solving simple network using CPM/                                 |
|            | of the project with the help of       | set sorting simple needs of a bong of the                             |

| Management | project management techniques.  | PERT<br>6.4 Concept of Breakeven analysis.<br>6.5 Progress tracking charts-bar charts,                                           |
|------------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------|
|            |                                 | Gantt charts and histogram.                                                                                                      |
| Unit - VII | 7a. Apply marketing strategies. | 7.1 Objective & Function of marketing management                                                                                 |
| Marketing  |                                 |                                                                                                                                  |
| Management |                                 | 7.2 Sellers and Buyers markets, Marketing,<br>Sales, Selling vs. Marketing, Sales<br>promotion, Marketing Mix, Pricing Policies. |
|            |                                 | 7.3 Marketing Strategies: Segmentation,<br>Targeting & Positioning.                                                              |
|            |                                 | 7.4 Marketing Information System.                                                                                                |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit<br>No. | Unit Title                                | Teachi      | <b>Distribution of Theory Marks</b> |            |            |                |  |  |  |
|-------------|-------------------------------------------|-------------|-------------------------------------|------------|------------|----------------|--|--|--|
| 110.        |                                           | ng<br>Hours | R<br>Level                          | U<br>Level | A<br>Level | Total<br>Marks |  |  |  |
| Ι           | Business Overview                         | 03          | 02                                  | 04         | 00         | 06             |  |  |  |
| II          | Evolution of Scientific Management        | 09          | 04                                  | 10         | 00         | 14             |  |  |  |
| III         | Personnel Management &<br>Legislative Act | 11          | 04                                  | 10         | 04         | 18             |  |  |  |
| IV          | Financial Management.                     | 07          | 04                                  | 06         | 02         | 12             |  |  |  |
| V           | Materials Management                      | 06          | 04                                  | 04         | 02         | 10             |  |  |  |
| VI          | Project Management                        | 07          | 02                                  | 06         | 04         | 12             |  |  |  |
| VII         | Marketing Management                      | 05          | 02                                  | 04         | 02         | 08             |  |  |  |
|             | Total                                     | 48          | 22                                  | 44         | 14         | 80             |  |  |  |

Legends: R–Remember, U–Understand, A–Apply and above (Bloom's revised Taxonomy)

### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

The practical/exercises should be properly designed and implemented with an attempt to develop different types of skills (**outcomes in psychomotor and affective domain**) so that students are able to acquire the competencies/ programme outcomes. Following is the list of practical exercises for guidance.

Faculty should refer to that common list and should ensure that students also acquire outcomes in affective domain which are required for overall achievement of Programme Outcomes/Course Outcomes.

The tutorial/practical/exercises should be properly designed and implemented with an attempt to develop different types of cognitive and practical skills (**Outcomes in cognitive, psychomotor and affective domain**) so that students are able to acquire the competencies.

- 1. Identify the different sector and industry of given company name.
- 2. Plan, organize and Coordinate various activities in industry or a project.
- 3. Ensure proper management of human resources.
- 4. Identify the need of finance and its optimal use in an organization.
- 5. Manage materials & Stores.
- 6. Apply PERT/CPM method for project scheduling of given project
- 7. Apply marketing strategies to promote the sales & services.

| S.  | Unit No. | Practical Exercises                                                                           | Approx.<br>Hrs. |
|-----|----------|-----------------------------------------------------------------------------------------------|-----------------|
| No. |          | (Outcomes in Psychomotor Domain)                                                              | required        |
|     |          | Part A- Common to all Programme                                                               |                 |
| 1.  | Ι        | To collect data / information and prepare report about                                        | 04              |
|     |          | business/organization and identify the nature of business and prepare organization structure. |                 |
| 2.  | III      | Identify and propose Safety requirements/ mechanism for an                                    | 04              |
|     |          | industry.                                                                                     |                 |
| 3   | V        | Prepare a report of inventory by visiting stores of an                                        | 02              |
|     |          | industry/organization.                                                                        |                 |
| 4   | VI       | Prepare network diagram using CPM& PERT (3-4 networks                                         | 04              |
|     |          | each) for identified Projects                                                                 |                 |
| 5.  | IV/VII   | Undertake Survey/Data Collection, Presentation and Data                                       |                 |
|     |          | interpretation for following. (Any One)                                                       | 04              |
|     |          | a. Sales Promotion.                                                                           |                 |
|     |          | b. Channel of Distribution                                                                    |                 |
|     |          | c. Capital Generation & Management                                                            |                 |

|       |           | Part B- Programme Specific Practical for<br>CO/IT/ET/EE/ME/AE (Five Numbers)                                                                                                                                                                          |       |
|-------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| 6     | III       | Prepare a report on Human Resource (HR) policies used in<br>Multinational companies                                                                                                                                                                   | 02    |
| 7     | IV        | Give presentation (PPT) on various Financial budgets of any company                                                                                                                                                                                   | 02    |
| 8     | IV/V/VII  | Data collection on i) GST ii) Six sigma iii) Market segmentation                                                                                                                                                                                      | 02    |
| 9     | VII       | Discuss Global marketing strategies by making small presentation (PPT).                                                                                                                                                                               | 04    |
| 10    | All Units | Micro Project (visit to an industry, observe & prepare a<br>report on various management techniques adopted by the<br>company)                                                                                                                        | 04    |
| Total |           |                                                                                                                                                                                                                                                       | 32Hrs |
|       |           | Part B- Programme Specific Practical for Civil<br>Engineering ( Five Numbers )                                                                                                                                                                        |       |
| 6     | III       | Prepare a small report on Human Resource (HR) policies<br>used in any Multinational companies/infrastructure<br>development company/manufacturing of civil engineering<br>materials.                                                                  | 02    |
| 7     | VI        | Prepare a bar chart of construction activities of bunglow / residential building.                                                                                                                                                                     | 02    |
| 8     | V         | Study and collection of various records pertaining to store<br>like Goods received sheet, store indent, priced store ledger,<br>register of materials at site account, statement of receipts,<br>issues& balance of road metals, cement register etc. | 02    |
| 9     | II/III/V  | <ul> <li>Group Discussions and report writing on (Any one form following or likewise)</li> <li>1) Modern Techniques of material Management</li> <li>2) Causes of Accident and safety management.</li> <li>3) Production and Labour budget</li> </ul>  | 04    |
| 10    | All Units | Micro Project (visit to an PWD/WRD/Large private<br>construction organization/infrastructure development<br>company to observe & prepare a report on construction<br>management techniques/working adopted by the<br>organization)                    | 04    |
| Total | l         | 1                                                                                                                                                                                                                                                     | 32Hrs |

# 8. SUGGESTED STUDENTS ACTIVITIES

| Activities                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------|
| Prepare a group of five students and write qualities of a good leader.                                                |
| Prepare a group of 10 students and conduct a group activity like housekeeping of a class room.                        |
| Draw a network for given set of activities and identify the critical path                                             |
| Calculate the total time required to accomplish a task when $t_e$ , $t_p$ and $t_m$ is given.                         |
| Visit to nearest ESIC office and collect information about services provided by ESIC office to the working employees. |
|                                                                                                                       |

# 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

| Sr No. | Unit no. | Unit name                                 | Strategy                                  |
|--------|----------|-------------------------------------------|-------------------------------------------|
| 1      | 1        | Business Overview                         | Live explanation, videos.                 |
| 2      | 2        | Evolution of Scientific<br>Management     | Live explanation, , case study            |
| 3      | 3        | Personnel Management &<br>Legislative Act | Live explanation, movie, case study       |
| 4      | 4        | Financial Management.                     | Case study, survey, industrial visits     |
| 5      | 5        | Materials Management                      | Net survey, Case study, industrial visits |
| 6      | 6        | Project Management                        | Net survey, Case study, industrial visits |
| 7      | 7        | Marketing Management                      | Net survey, Case study, industrial visits |

# 10. SUGGESTED LEARNING RESOURCE

| Sr No. | Title of Book                                | Author                            | Publication              |
|--------|----------------------------------------------|-----------------------------------|--------------------------|
| 1.     | Industrial Organization and<br>Management    | O.P.Khanna,                       | DhanpatRai and<br>Sons   |
| 2.     | Industrial Organization and<br>Management    | Banga and Sharma,                 | Khanna Publications      |
| 3.     | Modern Business Organization<br>& Management | S.A.Sherlekar& V.A.<br>Sherlekar, | Himalaya<br>Publications |

# LEARNING WEBSITE & SOFTWARE

- 1. <u>https://mitpress.mit.edu</u>
- 2. <u>http://iveybusinessjournal.com/publication/a-new-role-for-management</u>
- 3. https://en.wikipedia.org/wiki/Project\_management
- 4. http://www.pmi.org.in/

# 11. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs)WITH COURSE OUTCOMES (COs)

| SR<br>No | Course Outcome                                                                  |   |   |   |   | Р | Os |   |   |   |    | PSO | s  |
|----------|---------------------------------------------------------------------------------|---|---|---|---|---|----|---|---|---|----|-----|----|
| 110      |                                                                                 | 1 | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | 01  | 02 |
| 1        | Identify the different sector and industry of given company name.               | - | - | - | - | 3 | -  | - | 1 | - | -  | 3   | -  |
| 2        | Plan, organize and Coordinate<br>various activities in industry or a<br>project | 3 | 3 | 2 | - | 3 | -  | - | 1 | - | -  | 3   | -  |
| 3        | Ensure proper management o human resources.                                     | 2 | 3 | - | 2 | 3 | -  | - | 1 | - | -  | 2   | 2  |
| 4        | Identify the need of finance and its optimal use in an organization             | 3 | 3 | - | 2 | - | -  | - | - | - | 1  | 3   | 3  |
| 5        | Manage materials & Stores                                                       | 2 | 3 | - | 3 | - | -  | - | - | - | -  | 3   | -  |
| 6        | Apply PERT/CPM method for project scheduling of given projec                    | 1 | 3 | - | 3 | - | -  | - | - | - | 2  | 3   | 2  |
| 7        | Apply marketing strategies to promote the sales & services.                     | - | 3 | - | 3 | - | -  | 2 | 2 | - | 2  | 3   | -  |

#### **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                            |
|----------|-----------------------------|----------------------------------------------------------------------|
| 1        | A. B. Deshpande             | Lecturer in Mechanical Engineering, Govt. Polytechnic,<br>Aurangabad |
| 2        | K.S. Borde                  | Lecturer in Civil Engineering, Govt. Polytechnic, Aurang             |
| 3.       | P.B. Lahoti                 | Lecturer in Computer Engineering, Govt. Polytechnic,<br>Aurangabad   |

#### COURSETITLE PRODUCTION ENGINEERING

#### COURSE CODE 6M506

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which is offered |
|---------------------------------------------------|------------------------------|
| Mechanical                                        | Sixth                        |

GPA

#### 1. RATIONALE:-

In changing industrial scenario the importance of productivity is becoming more and more crucial. A diploma engineer working at lower level management in industries, they play a vital role in above aspects. Developing a positive attitude in employees towards the productivity is crux of industrial engineer. A supervisor can achieve highest level of productivity by using proper workplace layout, proper methods of processing. At the same time principles of motion economy reduces stress and fatigue in workers. The Diploma pass-out should be employable as an Industrial Engineer, well acquainted with recent trends in the area of Industrial Engineering and should ensure productivity in all level of supervision.

#### 2. COMPETENCY:-

"Inculcate capability to transmit objectives and plans of management in day to day operations and continuously monitor them."

| Teaching Scheme |                                            | Total | Examination Scheme (Marks) |     |       |                  | )          |     |
|-----------------|--------------------------------------------|-------|----------------------------|-----|-------|------------------|------------|-----|
|                 | (Hours/ Credits) Credits<br>(L+T+P) Theory |       | ory Practical Total        |     | Total |                  |            |     |
| L               | Т                                          | Р     | С                          | ESE | РТ    | ESE @<br>(PR/OR) | PA<br>(TW) | 125 |
| 3               | -                                          | 2     | 5                          | 80  | 20    | -                | 25         | 123 |
| Du              | Duration of the Examination (Hrs)          |       |                            | 03  | 01    |                  |            |     |

#### **3. TEACHING AND EXAMINATION SCHEME**

**Legends:** L-Lecture; T – Tutorial/Teacher Guided Theory Practice; **PR**-Practical; C – Credit, **ESE** -End Semester Examination; **PA** - Progressive Test; **OR**-Oral examination,~ Online examination.

#### 4. COURSE OUTCOMES:

- 1. Apply productivity improvement tools at all levels of workplace by using principles of industrial engineering.
- 2. Analyze different types of plant layout & material handling equipments
- 3. Conduct a time study and Method study toestablish the improved methods of doing a work.
- 4. Calculate Standard and basic time by using PTS.
- 5. Comment the emerging trends in Production Engineering.

#### **5. DETAILED COURSE CONTENTS:**

| Unit                                                               | Major Learning Outcomes                                                                                                                                                                                                                | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                    | (in cognitive domain)                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unit-I<br>Productivity                                             | <ul> <li>1a Understand theimportance<br/>ofproductivity.</li> <li>1b Identify the factors &amp;<br/>techniques contributing<br/>productivity Improvement.</li> <li>1c coordinate the available<br/>resources of enterprise.</li> </ul> | <ul> <li>1.1 Productivity- Concept, benefits of higher productivity. Productivity at enterprise level.</li> <li>Approach 1: Total productivity factor.</li> <li>Approach 2: total factor productivity.</li> <li>Approach 3: ROI.</li> <li>1.2 Factors contributing productivity Improvement.</li> <li>1.3 Productivity of material, land building.</li> <li>1.4 Techniques for productivity measurement:-</li> <li>Work content and ineffective time,</li> <li>improving productivity by reducing work content,</li> <li>improving productivity by reducing ineffective time,</li> <li>Role of management, supervisor, worker in work study.</li> <li>1.5 Simple productivity calculations based on actual production and standard production.</li> </ul> |
| Unit-II<br>Plant layout<br>and material<br>handling<br>equipment's | <ul><li>2a.Explain various types of plant layouts with their merits, demerits and their application.</li><li>2b. Describe importance and applications of material handling equipment.</li></ul>                                        | <ul><li>2.1 Plant layout: Definition and concept.</li><li>2.2 Types of plant layout, their applications, advantages and limitations.</li><li>2.3 Role of material handling systems in industries.</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                    | 2c. Select material handling<br>equipment's for given<br>situation.                                                                                                                                                                    | 2.4 Classification of Material handling equipment<br>in Mechanical Industry, its applications and<br>selection criteria.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Unit -III                                                          | 3a. Apply the work study                                                                                                                                                                                                               | 3.1Influence of working conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

| Methods<br>Study                                         | procedureforagivenmanufacturing process.3b.DrawFlowProcesschart,travelchartforgivenproduction shop3c.Applyprinciplesofmotionaconomyaseconomyaa4aRecord time for the elementof work using time studyequipment's.4bConduct a Time study for a<br>given element of work.agiven element of work. | <ul> <li>Occupational safety</li> <li>Fire prevention</li> <li>Layout and house keeping</li> <li>Lighting &amp; ventilation</li> <li>Noise and vibrations.</li> <li>3.2 procedure of method study,</li> <li>3.3 process chart symbols,</li> <li>3.4 flow process chart, travel chart, Multiple activity chart, Two handed process chart</li> <li>3.5String diagram.</li> <li>3.6 Questioning technique</li> <li>3.7 Primary questions &amp; secondary questions.</li> <li>3.8 Principles of motion economy,</li> <li>3.9 use of human body ,</li> <li>3.10 arrangement of work place ,</li> <li>3.11 Introduction to 5s ,</li> <li>3.12 SIMO chart,</li> <li>3.13 Therbligs,</li> <li>3.14 Memo &amp; Micro motion study.</li> <li>4.1 Purpose &amp; Procedure</li> <li>4.2 Selecting the job &amp; worker for the study.</li> <li>4.3 Techniques of work measurement</li> <li>Work sampling,</li> <li>Stops watch Method.<br/>Time study: Definition, Objectives<br/>Time study equipment- stop watch, time study yoard, time study forms.</li> </ul> |
|----------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit -V<br>Recent Trends<br>in Production<br>Engineering |                                                                                                                                                                                                                                                                                              | Time study: Definition, Objectives                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

6M506

|  | • | Kaizen |
|--|---|--------|
|  | • | ERP    |
|  | • | ТРМ    |

#### 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit<br>No | Unit Name                                      | Teaching<br>Hours | Distribution of Theory Marks |            |            |                |
|------------|------------------------------------------------|-------------------|------------------------------|------------|------------|----------------|
| 110        |                                                | nours             | R<br>Level                   | U<br>Level | A<br>Level | Total<br>Marks |
| 1          | Productivity                                   | 11                | 2                            | 6          | 4          | 12             |
| 2          | Plant layout and material handling equipment's | 8                 | 4                            | 4          | 4          | 12             |
| 3          | Methods Study                                  | 11                | 4                            | 12         | 8          | 24             |
| 4          | Work Measurement                               | 10                | 6                            | 10         | 6          | 22             |
| 5          | Recent Trends in Production<br>Engineering     | 8                 | 4                            | 4          | 2          | 10             |
|            | Total                                          | 48                | 20                           | 36         | 24         | 80             |

**Legends:** R = Remembrance; U = Understanding; A = Application and above levels (Revised Bloom's taxonomy)

# 7.LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| SrNo. | Unit  | Practical Exercises                                                                                                                                                                                                                                                                                                                    | Approx. Hrs. |
|-------|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|
|       | No.   | (Outcomes in Psychomotor Domain)                                                                                                                                                                                                                                                                                                       | Required     |
| 1     | I,V   | <ul> <li>Survey/Data Collection and Data interpretation.         <ul> <li>a. Productivity &amp; standard of living</li> <li>b. Productivity and GDP</li> <li>Comparison with other countries.</li> <li>c. ERP and its significance in an industrial concern.</li> </ul> </li> </ul>                                                    | 4            |
| 2     | I,III | <ul> <li>Case study -I</li> <li>a. National Productivity Council study of working of the organization.</li> <li>b. Production Layout of a small, medium and large industry.(take one actual example from each).draw sketches and give description</li> <li>c. Ideal workplace in reference to safety, layout, lighting etc.</li> </ul> | 4            |

| 3 | V            | <ul> <li>Case study -II         <ul> <li>Ergonomically designed workplace</li> <li>ISO standard series and quality managements system in any manufacturing industry (take one actual example)</li> <li>JIT/KAIZEN/TPM Practices in any industry.</li> <li>Listing non productive activities time at a workplace.</li> </ul> </li> </ul>                                                                                                                                                                          | 4  |
|---|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4 | IV           | <ul> <li>Time study: Calculate standard time for a given job using decimal minute stop watch techniques. Teacher will assign the situation/job/elements to be recorded. This include:</li> <li>a. Sketch the part undertaken for time study.</li> <li>b. List elements to be considered.</li> <li>c. Observe and record elements time.</li> <li>d. List and justify allowances to be taken with values.</li> <li>e. Calculate standard time.</li> </ul>                                                          | 6  |
| 5 | IV           | <ul> <li>Performance rating:<br/>Calculate co-efficient of co-relation for time study person using performance rating technique. Teacher will assign the situation.<br/>This include:         <ul> <li>a. Define performance rating.</li> <li>b. Describe the situation assigned by the teacher.</li> <li>c. List the steps followed to perform the exercise.</li> <li>d. Observe and record the observations.</li> <li>e. Plot, interpret and calculate the co-efficient of correlation.</li> </ul> </li> </ul> | 4  |
| 6 | III          | <ul> <li>Mini Project on following-(Any two)</li> <li>a. Sketch part and assembly, prepare OPC/flow process chart/Man machine chart, Prepare process planning sheet.</li> <li>b. To design a workplace using principle of motion economy</li> <li>c To conduct a methods study.</li> <li>d To conduct a time study using PTS/Standard Data/work sampling</li> </ul>                                                                                                                                              | 4  |
| 7 | All<br>units | • Visit at least two related industries. Prepare the report as per the guidelines provided by the teacher.                                                                                                                                                                                                                                                                                                                                                                                                       | 6  |
|   | <b>I</b>     | TOTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 32 |

# 8. SUGGESTED STUDENT ACTIVITIES

| Sr. No | Activities (ANY 8 to 10)                                                                                                       |
|--------|--------------------------------------------------------------------------------------------------------------------------------|
| 1      | Search different journals on productivity                                                                                      |
| 2      | Collect information of NPC.                                                                                                    |
| 3      | Watch The Web Site Of Niite Mumbai                                                                                             |
| 4      | List down what can be done from student side to improve the productivity in class room9(effective utilization of college time) |
| 5      | Draw the plant layout of workshop                                                                                              |
| 6      | Classify the raw material in the workshop as per IS Code                                                                       |
| 7      | Draw the flow process chart for turning work piece                                                                             |
| 8      | Prepare travel chart for supervisor in shop floor.                                                                             |
| 9      | Apply 5 s to your study table.                                                                                                 |
| 10     | Prepare CHART FOR THERBLIGS                                                                                                    |
| 11     | Collect format for time study sheet.                                                                                           |
| 12     | Suggest any KAIZEN to improve manufacturing process in shop                                                                    |
| 13     | Draw a multi-activity chart for supervisor operator two CNCs at a time for a given setup and cycle time.                       |
| 14     | Draw a string diagram for any operation in the shop.                                                                           |
| 15     | suggest the simple jig and draw a sketch for drilling machine.                                                                 |
| 16     | Prepare a group of 5 students and jot down the outcome of tossing the coin and plot normal distribution.                       |

GPA

# 9. SPECIAL INSTRUCTIONAL STRATEGIES (if any)

| Sr | Unit | Unit name                                      | Strategy                                  |
|----|------|------------------------------------------------|-------------------------------------------|
| no | no   |                                                |                                           |
| 1  | 1    | Productivity                                   | Net survey, Movie on productivity         |
| 2  | 2    | Methods Study                                  | Live explanation, movie, case study       |
| 3  | 3    | Work Measurement                               | Live explanation, movie, case study       |
| 4  | 4    | Plant layout and material handling equipment's | Case study, survey, industrial visits     |
| 5  | 5    | Modern Trends in Production<br>Engineering     | Net survey, Case study, industrial visits |

#### **10. SUGGESTED LEARNING RESOURCES**

| Sr  | Title of Book                                         | Author          | Publication                                        |
|-----|-------------------------------------------------------|-----------------|----------------------------------------------------|
| No. |                                                       |                 |                                                    |
| 1.  | Industrial Engineering (IE) and                       | C.Natha Muni    | New age international                              |
| 2.  | Management<br>Introduction to Work-study              | Reddy<br>ILO    | Publishers           Oxford publication            |
| 3.  | Tool Design                                           | Donaldson       | Tata MCGraw Hill<br>Publication Company<br>limited |
| 4.  | Handbook of IE: Technology and operations management. | GavrielSalvendy | Institute of Industrial<br>Engineers.              |
| 5.  | Comprehensive Industrial Engineering.                 | M. J Manek      | Laxmi Publications (P) Ltd.,<br>New Delhi.         |
| 6   | Introduction to Work-study. ISBN: 9221071081          | George Kanawaty | International Labor<br>Organisatioin, Geneva.      |
| 7   | Introduction to productivity                          |                 | National Productivity<br>Council (NPC).            |
| 8   | Method Study                                          |                 | NPC.                                               |

#### 11. Major Equipment/ Instrument with Broad Specifications

| Sr.No. | Major equipment/ Instrument with Broad Specification            | Quantity           |
|--------|-----------------------------------------------------------------|--------------------|
| 1      | Decimal stopwatch (Non fly back type).                          | 02 pcs.            |
| 2      | Decimal stopwatch (Fly back type)                               | 02 pcs.            |
| 3      | Playing cards                                                   | 2 sets.            |
| 4      | M.S Pins 10mm dia X 15mm length with tolerance of $\pm$ 0.01mm. | 100 pcs.           |
| 5      | Buttons of 6 different colors.                                  | 100 of each color. |

# **12LEARNING WEBSITE & SOFTWARE**

- a <u>https://www.nptel.ac.in/courses</u>
- b <u>https://www.k12reader.com</u>
- c <u>https://www.eduaction.com</u>
- d https://www.k5learning.com

# 13.MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs)WITH COURSE OUTCOMES (COs)

GPA

| Sr | Course Outcome                                                                                                            |   | POs |   |   |   |   |   |   |   | PSOs |    |    |
|----|---------------------------------------------------------------------------------------------------------------------------|---|-----|---|---|---|---|---|---|---|------|----|----|
| No |                                                                                                                           |   |     |   |   |   |   |   |   |   |      |    |    |
|    |                                                                                                                           | 1 | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10   | 01 | 02 |
| 1  | Apply productivity<br>improvement tools at all<br>levels of workplace by<br>using principles of<br>industrial engineering | 2 | 2   | 2 | 2 | 2 | 1 | 1 | 3 | 2 | 2    | 2  | -  |
| 2  | Analyze different types of<br>plant layout & material<br>handling equipments                                              | 2 | 2   | 2 | 2 | 1 | 1 | - | - | - | 2    | 2  | 1  |
| 3  | Conduct a time study and<br>Method study to<br>establish the improved<br>methods of doing a work.                         | 2 | 2   | 2 | 2 | 1 | 1 | 1 | 2 | 2 | 2    | 2  | 2  |
| 4  | Calculate Standard and basic time by using PTS                                                                            | 2 | 2   | - | 2 | - | - | 1 | 2 | 2 | 1    | 1  | 1  |
| 5  | Comment the emerging<br>trends in Production<br>Engineering                                                               | 1 | 3   | 2 | 2 | 1 | - | - | - | 2 | 1    | -  | -  |

# **Course Curriculum Design Committee**

| SrNo | Name of the faculty members | Designation and Institute                                            |
|------|-----------------------------|----------------------------------------------------------------------|
| 1    | A.B Deshpande               | Lecturer in Mechanical Engineering, Govt. Polytechnic,<br>Aurangabad |
| 2    | A.H.Chaudhari               | Lecturer in Mechanical Engineering, Govt. Polytechnic,<br>Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEADVANCED MANUFACTURING PROCESSESCOURSE CODE6M408

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Sixth                     |

#### 1. RATIONALE

Technicians engaged in engineering production should be competent in the selection and use of the machining processes, machines and tools. Today so many production processes and machines of advanced nature have been developed that it is really a problem to select a right machine and manufacturing process for a particular applications. The diploma technician should get the basic details of the machines used in the engineering practice. A good understanding of these machines will lead to better visualization of the practical problems encountered on the production shop floor. Automation has been playing an important role in the engineering applications. Present course will help the students to get fundamentals of the machines and various machining processes, process planning, cost evaluation of product and maintenance of machines.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Produce components using various types of manufacturing processes."

| Т                                 | eaching S | Scheme | Total              | Examination Scheme (Marks) |     |       |      |       |
|-----------------------------------|-----------|--------|--------------------|----------------------------|-----|-------|------|-------|
|                                   | (Hours/ C |        | Credits<br>(L+T+P) | Theo                       | ory | Pract | ical | Total |
| L                                 | Т         | Р      | С                  | ESE                        | РТ  | ESE @ | PA   |       |
|                                   | -         | -      | C                  | 2.22                       |     | (OR)  | (TW) | 150   |
| 3                                 | -         | 4      | 7                  | 80 20                      |     | 25#   | 25   | 150   |
| Duration of the Examination (Hrs) |           |        | 03                 | 01                         |     |       |      |       |

# 3. TEACHING AND EXAMNATION SCHEME

**Legends : L-**Lecture; **T-**Tutorial/Teacher Guided Theory Practice ; **PR-** Practical; **C-** Credits; **ESE-** End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work,# External, @ Internal examination,~ Online examination.

# 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Analyze operation of milling & gear production machines.
- 2. Interpret grinding machine operation.
- 3. Appraise surface finishing processes
- 4. Evaluate various non conventional machining processes
- 5. Select relevant SPM to produce quality job.
- 6. Produce jobs using milling, gear production, grinding & non conventional machines.

### 5. DETAILED COURSE CONTENTS

| Unit                                       | Major Learning Outcomes<br>(in cognitive domain)                                                                                                                                                                                                                                                         | <b>Topics and Sub-topics</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit- I<br>Milling<br>Machines<br>:        | <ul> <li>1a) Explain constructional details and specification of given milling machines.</li> <li>1b) Select suitable milling cutter for specific operation of a given job</li> <li>1c) Compute milling time for a given job</li> <li>1d) Identify nomenclature of a standard milling cutter.</li> </ul> | <ul> <li>1.1 Introduction, classification, Machine specifications,</li> <li>1.2 Basic parts of column and knee type milling machine, and their functions,</li> <li>1.3 Standard milling cutters, milling operations like plain milling, side milling, straddle milling, gang milling, face milling, slot milling, end milling, slitting.</li> <li>1.4 Up milling and down milling,</li> <li>1.5 Cutting parameters and machining time calculations (Simple Numerical).</li> </ul> |
| Unit– II<br>Gear<br>Production<br>Machines | <ul><li>2a. Select appropriate indexing<br/>method of gear cutting.</li><li>2b. Recommend gear<br/>generating method for specific<br/>gear.</li></ul>                                                                                                                                                    | <ul> <li>2.1 Introduction.</li> <li>2.2 Gear manufacturing methods, universal dividing head and indexing methods.</li> <li>2.3 Gear generating methods like gear shaping and hobbing (setup, working, advantages, disadvantages and applications).</li> <li>2.4Gear finishing methods-grinding, shaving, burnishing.</li> </ul>                                                                                                                                                   |
| Unit III<br>Grinding<br>Machines           | <ul><li>3a.Write specifications of<br/>grinding wheel.</li><li>3b.Significance of the grinding<br/>wheel balancing.</li><li>3c.Choose appropriate grinding</li></ul>                                                                                                                                     | <ul> <li>3.1 Introduction, classification,</li> <li>3.2 Working of grinding machine</li> <li>3.3 Types of Grinding process</li> <li>3.4 Grinding wheel specifications, grinding wheel</li> <li>dressing and truing, selection criteria for grinding</li> <li>wheel, balancing of grinding wheels,</li> </ul>                                                                                                                                                                      |

6M408

GPA

|                                                                            | wheel.                                                                                                                                                                                                                                                                                                                                                                                                                | 3.5 Safety precautions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit– IV<br>Surface<br>Finishing                                           | <ul> <li>4a.Select surface finishing<br/>method for the given job.</li> <li>4b.Select lapping parameters for<br/>the given job.</li> <li>4c.State the significance of<br/>Polishing, buffing and<br/>burnishing</li> </ul>                                                                                                                                                                                            | <ul> <li>4.1Introduction, need of surface finishing, methods of surface finishing.</li> <li>4.2 Working principles, merits, demerits and applications of Lapping, honing, super finishing,</li> <li>4.3 Polishing, buffing and burnishing.</li> </ul>                                                                                                                                                                                                                                                                                |
| Unit – V<br>Non<br>convention<br>al<br>Machining<br>Processes              | <ul> <li>5a. State the need and<br/>importance of non-conventional<br/>machining processes.</li> <li>5b.Explain working principle of<br/>given conventional machining<br/>processes.</li> <li>5c.Identify different non-<br/>conventional machining<br/>processes to be performed for<br/>the given job.</li> <li>5d.Select process parameters for<br/>the given non-conventional<br/>machining processes.</li> </ul> | <ul> <li>5.1 Need, importance and classification of non-<br/>conventional machining,</li> <li>5.2 working principles,</li> <li>5.3 process parameters,</li> <li>5.4 advantages, disadvantages and applications of<br/>following: <ul> <li>Water jet Machining (WJM)</li> <li>Abrasive jet Machining (AJM)</li> <li>Electro discharge machining (EDM)</li> <li>Wire cut discharge machining (WEDM)</li> <li>Laser beam machining (LBM)</li> <li>Ultrasonic machining (USM)</li> <li>Plasma arc machining.(PAM)</li> </ul> </li> </ul> |
| Unit – VI<br>Automatic<br>machines<br>And<br>Additive<br>manufactur<br>ing | <ul> <li>6a. Select appropriate automat<br/>for the given job.</li> <li>6b. Significance of transfer line<br/>machines.</li> <li>6c. Select suitable special<br/>purpose machine for the<br/>given job.</li> <li>6d. Select appropriate additive<br/>process.</li> </ul>                                                                                                                                              | <ul> <li>Automatic machines and Additive manufacturing(<br/>rapid prototype)</li> <li>6.1 Introduction to automatic machines, classification,<br/>automation strategies,</li> <li>6.2 Semiautomatic machines, multi tool center lathe,<br/>machining centers, SPM, transfer machining and<br/>its advantages,</li> <li>6.3 Introduction of additive manufacturing, Types,<br/>advantages and disadvantage.</li> </ul>                                                                                                                |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit<br>No. | Unit Title                                                            | Teaching<br>Hours | Distribution of Theory Marks |       |       |             |  |  |
|-------------|-----------------------------------------------------------------------|-------------------|------------------------------|-------|-------|-------------|--|--|
| 110.        |                                                                       | nours             | R                            | U     | A     | Total Marks |  |  |
|             |                                                                       |                   | Level                        | Level | Level |             |  |  |
| Ι           | Milling Machines                                                      | 08                | 2                            | 6     | 4     | 12          |  |  |
| Π           | Gear Production Machines                                              | 08                | 2                            | 6     | 4     | 12          |  |  |
| III         | Grinding Machines                                                     | 08                | 4                            | 6     | 4     | 14          |  |  |
| IV          | Surface Finishing                                                     | 08                | 4                            | 6     | 4     | 14          |  |  |
| V           | Non conventional Machining<br>Processes.                              | 08                | 4                            | 8     | 4     | 16          |  |  |
| VI          | Automatic machines and<br>Additive manufacturing( rapid<br>prototype) | 08                | 2                            | 6     | 4     | 12          |  |  |
|             |                                                                       | 48                | 18                           | 38    | 24    | 80          |  |  |

Legends: R – Remember, U – Understand, A – Apply and above (Bloom's revised Taxonomy)

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr. No. | Unit<br>No. | Practical Exercises<br>(Outcomes in Psychomotor Domain)                                                                                                                                                                                                                                                                | Approx.<br>Hrs.<br>required |
|---------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
| 1       | Ι           | Gear Cutting – One job involving boring, gear cutting and keyway cutting.                                                                                                                                                                                                                                              | 14                          |
| 2       | Π           | <ul><li>Prepare a job containing surface grinding / cylindrical grinding operations as per given drawing.</li><li>1.Facing, turning and centre drilling Grinding (Cylindrical)</li></ul>                                                                                                                               | 18                          |
| 3       | III<br>,IV  | <ul> <li>Prepare a job on lapping machine as per given drawing.</li> <li>Demonstration on the lapping machine setup.</li> <li>Prepare job on lapping machine as per the given drawing.<br/>OR<br/>Prepare a job on honing machine as per given drawing.</li> <li>Demonstration on the honing machine setup.</li> </ul> | 16                          |

|   |   | • Prepare job on honing machine as per the given drawing.                                                                                                                                                                                                                                                                                                      |    |
|---|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 4 | V | <ul> <li>Prepare a job on any SPM (Turret/Capstan Lathe, Automat) as per given drawing.</li> <li>a) Prepare a job on Turret/Capstan Lathe consist of the operations facing, plain/step turning, drilling as per given drawing.</li> <li>b) Prepare a job on Automat consist of the operations turning, threading, parting-off as per given drawing.</li> </ul> | 16 |
|   |   | Total                                                                                                                                                                                                                                                                                                                                                          | 64 |

# 8. SUGGESTED STUDENTS ACTIVITIES

- 1. Prepare journal for practicals.
- 2. Visit to concerned industries.
- 3. Write specifications of different machine tools observed during industrial visit.
- 4. Library/Internet survey related to advanced machining processes and prepare a report.

# 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

# **10. SUGGESTED LEARNING RESOURCE**

| Sr.No. | Title of Book                 | Author                      | Publication             |
|--------|-------------------------------|-----------------------------|-------------------------|
| 1      | Workshop Technology<br>Vol. 2 | Hajra, Choudhary            | Asia Publications Delhi |
| 2      | Workshop Technology<br>Vol.2  | Raghuwanshi,                | Dhanpat rai and sons    |
| 3      | Production Technology         | R.K. Jain,                  | Khanna Publications     |
| 4      | Workshop Technology           | Chapman (Vol. 1 & Vol. 2) , | Arnold Publications     |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED

| Sr.<br>No. | Name of equipment                                                                                                                                                                                                                                            | Brief specification       |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|
| 1.         | Centre lathe, with required set of work<br>holding devices, cutting tools, accessories<br>and tool holders. Cutting tools to include<br>carbide inserts and related tool holders for<br>carbide inserts.                                                     | As per the specifications |
| 2.         | Horizontal milling machine, with required<br>set of work holding devices, cutting tools,<br>accessories and tool holders. Cutting tools<br>to include carbide inserts and related tool<br>holders for carbide inserts. Should also<br>include indexing head. | As per the specifications |
| 4          | Drilling, with required set of work holding devices, cutting tools, accessories and tool holders.                                                                                                                                                            | As per the specifications |
| 5          | Tool and cutter grinding machine, with<br>required set of work holding devices,<br>cutting tools, accessories and tool holders.                                                                                                                              | As per the specifications |
| 6          | Cylindrical grinding machine, with required<br>set of work holding devices, cutting tools,<br>accessories and tool holders. vi. Or Surface<br>grinding machine.                                                                                              | As per the specifications |
| 7          | Lapping & Honing machine.                                                                                                                                                                                                                                    | As per the specifications |

# 12. LEARNING WEBSITE & SOFTWARE

- i. NPTEL Lecture Series.
- ii. http://www.intel.com/pressroom/kits/quickreffam.htm
- iii. web.stanford.edu/class/ee282

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| Sr<br>No | Course Outcome                                                                                 |   | POs |   |   |   |   | PSOs |   |   |    |    |    |
|----------|------------------------------------------------------------------------------------------------|---|-----|---|---|---|---|------|---|---|----|----|----|
|          |                                                                                                | 1 | 2   | 3 | 4 | 5 | 6 | 7    | 8 | 9 | 10 | 01 | 02 |
| 1        | Analyze operation of<br>milling & gear<br>production machines.                                 | 2 | 2   | 3 | 2 | - | 1 | -    | - | - | 1  | -  | 2  |
| 2        | Interpret grinding machine operation.                                                          | 2 | 2   | 2 | 1 | 1 | - | -    | - | - | 1  | 1  | 2  |
| 3        | Appraise surface<br>finishing processes                                                        | 2 | 2   | 2 | 3 | - | 1 | -    | - | 1 | 2  | 1  | 2  |
| 4        | Evaluate various non<br>conventional<br>machining processes                                    | 3 | 3   | 3 | 2 | 1 | 1 | -    | - | 1 | 2  | 2  | 3  |
| 5        | Select relevant SPM to produce quality job.                                                    | 1 | 3   | 3 | 2 | 1 | 1 | -    | - | - | 2  | 1  | 3  |
| 6        | Produce jobs using<br>milling, gear<br>production, grinding &<br>non conventional<br>machines. | 2 | 2   | 3 | 2 | 1 | 1 | -    | 1 | 1 | 2  | 2  | 3  |

#### **Course Curriculum Design Committee**

| Sr | Name of the     | Designation and Institute |
|----|-----------------|---------------------------|
| No | faculty members |                           |
|    |                 |                           |

- 1 Dr.U.V Pise Head of the Department, Govt. Polytechnic, Aurangabad
- 2 D.V Tammewar Workshop Superintendent, Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEPROJECTCOURSE CODE6M502

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| CE/ME/EE/EJ/CO/IT/AE/DDGM                         | Sixth                     |

#### 1. RATIONALE

One of the basic aim of "Project " is to develop the ability of "learning to Learn " on his own and work in team .Project course provides opportunities for students to keep pace with future changes in technology and in the acquisition of knowledge and skills as and when needed. The course of the "Project" is designed with an aim to all these requirements of the students, which will include planning of the Programme, which must be completed within the time allocated. The Project should never have a single solution and process of arriving at a particular solution, the student must be required to make number of decisions after study information as he has gathered from experiments, surveys, analysis etc.

The programme aims at developing in the student, knowledge and skills to match the current and projected needs of industry/ user systems, social awareness and professional attitudes. In relation to the course and topics to be taught, the student will have to constantly update himself and keep pace with the changing technologies and the current and projected needs of user systems. Another important aspect is the development of the attitude of enquiry, the inculcation of sound study and work habits, side by side with the development of the overall personality as well as positive attitudes

Apart from supervising the engineering processes and maintenance of Engineering work ,machines and equipment's , a diploma technician has to do investigate, survey, collect data, refer handbooks and design some components , prepare estimates. Thus it will be observed that the job of a Mechanical engineer is of integrating knowledge of different theoretical subjects in successful completion of an engineering work.

#### 2. COMPETENCY

The course content should be taught and implemented with the aim to develop different

types of skills so that students are able to acquire following competency.

"Apply the knowledge of various courses to solve real life problems of society and to develop team work, leadership and entrepreneurship skills to make students professionally competent

#### 3. TEACHING AND EXAMNATION SCHEME

| Т                | Teaching Scheme                   |                    | Total | Examination Scheme (Marks) |           |       |       |     |
|------------------|-----------------------------------|--------------------|-------|----------------------------|-----------|-------|-------|-----|
| (Hours/ Credits) |                                   | Credits<br>(L+T+P) |       |                            | Practical |       | Total |     |
| L                | Т                                 | Р                  | С     | ESE                        | РТ        | ESE @ | PA    |     |
|                  |                                   |                    |       |                            |           | (OR)  | (TW)  | 150 |
| -                | -                                 | 4                  | 4     |                            |           | 50#   | 100   | 130 |
| Du               | Duration of the Examination (Hrs) |                    |       |                            |           |       |       |     |

**Legends : L-**Lecture; **T-**Tutorial/Teacher Guided Theory Practice ; **P-** Practical; **C-** Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Conduct Surveys/ Investigate the field situation, collect, analyze and synthesize the data
- 2. Apply Knowledge to solve field Problems
- 3. Develop of inquisitive ,innovative skill and confidence to work independently
- 4. Participate effectively in group work
- 5. Conduct required experiment/testing
- 6. Prepare and present the project report.

# 5. DETAILED COURSE CONTENTS

| Sr.<br>No. | Unit | Project work activities                                                                                                                                 | Ho<br>urs |
|------------|------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| 1.         | 1    | Literature survey, data collection, identifying problem, deciding scope of topic and objective of the project, discussion, topic selection.             | 12        |
| 2.         | 2    | Searching of information, analyzing, Interpretation, editing of information of collected data, procurement of material for experimentation if required. | 12        |
| 3          | 3.   | Experimentation, testing, calculations, data survey, Solutions to given problem / work if any                                                           | 12        |

|    |   | Total                                                                                    | 64 |
|----|---|------------------------------------------------------------------------------------------|----|
| 6. | 6 | Report writing, editing, Presentation and submission                                     | 08 |
| 5. | 5 | Preparation of Model/chart/video shoot/ppt etc.                                          | 08 |
| 4. | 4 | Design, calculations, costing and programming wherever necessary finding<br>Conclusions. | 12 |

#### 6. SUGGESTED STUDENT ACTIVITIES

- a) Form the group of 4/5 student for a project activity.
- b) Allot the guide (faculty) for each group.
- c) Decide the topic of project.
- d) Conduct survey/experimentation.
- e) Report writing and presentation.

#### 7. SUGGESTED AREAS FOR THE PROJECT WORK.

| Sr.<br>No. | Areas For Selection                                                                                                                                                     |  |  |  |  |  |
|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| 1          | Fabrication of small machine / devices/ test rigs/ material handling devices/ jig &                                                                                     |  |  |  |  |  |
|            | fixtures/demonstration models etc. Report involving aspects of drawing, process sheets costing, Installation, commissioning & testing should be prepared and submitted. |  |  |  |  |  |
| 2          | Design & fabrication of mechanisms, machines, Devices etc.                                                                                                              |  |  |  |  |  |
| 3          | Development of computer program for designing and /or drawing of machine components,                                                                                    |  |  |  |  |  |
|            | Simulation of movement & operation, 3D modeling, pick & place robots etc.                                                                                               |  |  |  |  |  |
| 4          | Industry sponsored projects-project related with solving the problems identified by industry                                                                            |  |  |  |  |  |
|            | should be selected. One person / engineer from industry is expected to work as co-guide                                                                                 |  |  |  |  |  |
|            | along with guide from institution.                                                                                                                                      |  |  |  |  |  |
| 5          | Topic selected must be related with latest technological developments in mechanical or                                                                                  |  |  |  |  |  |
|            | Mechatronics field and should not be a part of diploma curriculum.                                                                                                      |  |  |  |  |  |
| 6          | Investigative projects-Project related with investigations of causes for change in                                                                                      |  |  |  |  |  |
|            | Performance or structure of machine or component under different constraints through                                                                                    |  |  |  |  |  |

|    | experimentation and data analysis.                                                                                                                                                                                                                                                                                                                                          |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7  | Maintenance based projects: The institute may have some machine/ equipment/ system<br>which are lying idle due to lack of maintenance. Students may select the specific<br>machines/equipment/system. Overhaul it, repair it and bring it to working condition. The<br>systematic procedure for maintenance to be followed and the report of the activity are<br>submitted. |
| 8  | Industrial engineering based project: Project based on work study, method study, methods<br>improvement, leading to productivity improvement, data collection, data analysis and data<br>interpretation be undertaken.                                                                                                                                                      |
| 9  | Low cost automation projects: Project based on hydraulic/pneumatic circuits resulting into low cost automated equipment useful in the identified areas.                                                                                                                                                                                                                     |
| 10 | Innovative/ Creative projects-Projects related with design, develop & implementation of<br>new concept for some identified useful activity using PLC, robotics, non-conventional<br>energy sources, CIM, Mechatronics etc.                                                                                                                                                  |
| 11 | Environmental management systems projects: Projects related with pollution control, Solid waste management, liquid waste management, Industrial hygiene etc., Working model or case study should be undertaken.                                                                                                                                                             |
| 12 | Market research/ survey based projects: Projected related with identification of extent of demand, sales forecasting, comparative study of marketing strategies, comparative study of channels of distribution, Impact of variables on sales volume etc.                                                                                                                    |

#### 8. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

- a) The project topic/ title should not repeated by group.
- b) Guide should be Senior or experienced faculty
- c) The project topic should selected such that, it should complete in a semester.

# MAJOR PROJECT REPORT FORMAT

- a. Project report shall be in the print form on A-4 size white bond paper.
- b. Typing shall be in Times New Roman with spacing of 1.5 using one side of paper.
- c. Margins: Left = 37.5 mm Right, Top and Bottom = 25mm.
- d. Front page: Titles TNR 18 bold, other TNR 14 bold. With Institute Logo.
- e. Inner Pages: Titles -TNR 14 Bold , other TNR 12 .

f. Page Nos: Should appear on the right hand top corner of each page starting after index page.

- g. Tables to be preferable in the Text format only.
- h. Sketches to be drawn on separate sheet / pages in black ink.

i. The Last content in the index to be of references. Acknowledgement to be added in the report.

j. Binding: Hard with golden embossing on the front cover of black

colour is preferred for the Major Project report. The number of copies are to be prepared by the student are 7 nos.

(If, 5 Student + Guide + Department Copy)

#### 9. SUGGESTED LEARNING RESOURCES

| Sr. | Title of Book                         | Author | Publication |
|-----|---------------------------------------|--------|-------------|
| No. |                                       |        |             |
| 1   | Hand book of Print Media              |        |             |
| 2   | IS code                               |        |             |
| 3   | Reference books as per selected areas |        |             |

# 10. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO. | Course Outcome                                                                                         | Р      | РО | Р      | РО | PS | PS | No. of |
|-----|--------------------------------------------------------------------------------------------------------|--------|----|--------|----|----|----|----|----|----|----|----|----|--------|
| NO. |                                                                                                        | 0<br>1 | 2  | 0<br>3 | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 01 | 02 | hours  |
| CO1 | Conduct Surveys/<br>Investigate the field<br>situation, collect,<br>analyze and synthesize<br>the data | 1      | 2  | -      | 2  | -  | -  | -  | 2  | 2  | -  | 1  | -  | 12     |
| CO2 | Apply Knowledge to solve field Problems                                                                | 2      | 3  | 2      | 2  | 1  | 1  | -  | 1  |    | 1  | 1  | 2  | 12     |
| CO3 | Develop of inquisitive<br>,innovative skill and<br>confidence to work<br>independently                 | 1      | 1  | 2      | 2  | -  | -  | -  | -  | -  | 3  | 1  | 1  | 12     |
| CO4 | Participate effectively in group work                                                                  | -      | -  | -      | -  | -  | -  | 1  | 3  | 2  | -  | -  | 2  | 12     |
| CO5 | Conduct required<br>experiment/testing                                                                 | -      | -  | 3      | 2  | -  | -  |    | 3  | 2  | -  | 1  | 3  | 08     |
| CO6 | Prepare and present the project report.                                                                |        | 2  | -      | -  | -  | -  | -  | 3  | 2  | -  | 2  | -  | 08     |

# **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                        |
|----------|-----------------------------|------------------------------------------------------------------|
| 1        | Prof. J.S. Patil            | HOD Civil Engg, Govt. Polytechnic, Aurangabad                    |
| 2        | Prof. Y.M.Patil             | Sr. Lecturer in Civil Engineering, Govt. Polytechnic, Aurangabad |

(Member Secretary PBOS)

(Chairman PBOS)

| COURSE TITLE | ADVANCED MANUFACTURING SYSTEMS |
|--------------|--------------------------------|
| COURSE CODE  | 6M507                          |

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Sixth                     |

#### 1. RATIONALE

In the present scenario of globalization, liberalization and privatization, manufacturers have to be very competitive. To be competitive, companies should attempt to be best in the field of quality, price, delivery speed, delivery reliability, flexibility and innovation. Organizations should therefore aim to maximize performance in these areas in order to maximize competitiveness. In this view it is important for the Diploma Engineers to understand fundamental concepts, principles and applications of advanced manufacturing systems which enable him to work as an engineer in competitive industrial environment.

#### 2. COMPETENCY

At the end of studying this course students will be able to -

"To apply the tools and techniques of manufacturing throughout the supply chain for productivity improvement, quality improvement, cost reduction and waste elimination"

| т  | Teaching Scheme Total             |    | Examination Scheme (Marks) |        |    |           |      |       |
|----|-----------------------------------|----|----------------------------|--------|----|-----------|------|-------|
|    | Hours/ C                          |    | Credits<br>(L+T+P)         | Theory |    | Practical |      | Total |
| L  | Т                                 | Р  | С                          | ESE    | РТ | ESE       | PA   |       |
|    | 1                                 | 1  | C                          | LDL    | 11 | (OR)      | (TW) | 150   |
| 04 | 0                                 | 02 | 06                         | 80     | 20 | 25#       | 25   | 150   |
| Du | Duration of the Examination (Hrs) |    |                            | 03     | 01 |           |      |       |

## 3. TEACHING AND EXAMNATION SCHEME

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; PR- Practical; C-Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, **TW - Term Work**, # External examination , @ Internal.~ Online examination.

## 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Compare world class manufacturing with conventional manufacturing.
- 2. Use tools of Lean Production for waste elimination.
- 3. Apply tools of JIT system for minimize inventory.
- 4. Identify the losses affecting overall equipment effectiveness.
- 5. Apply the principles of TQM for quality improvement and cost reduction.
- 6. Suggest the locations for improvement in workplace using 5S principles.

| Unit                     | Major Learning Outcomes                                | Topics And Sub-Topics                                                                                                 |  |  |  |
|--------------------------|--------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|--|--|
|                          | (Cognitive Domain Only)                                |                                                                                                                       |  |  |  |
| Unit –I                  | 1a. Identify needs of world                            | 1.1. Definition of WCM                                                                                                |  |  |  |
| Introduction to          | class manufacturing.                                   | 1.2. Need of WCM                                                                                                      |  |  |  |
| World class              | 1b. Compare mass production<br>with WCM                | 1.3. Critical Success factors of WCM                                                                                  |  |  |  |
| manufacturing<br>System. | 1c. Write best industrial inventory control practices. | 1.4. Mass production and its comparison<br>with WCM                                                                   |  |  |  |
|                          | 1d. Suggest type of plant                              | 1.5. Inventory in mass production.                                                                                    |  |  |  |
|                          | layout in a given situation                            | 1.6. Modern industrial inventory control practices                                                                    |  |  |  |
|                          |                                                        | 1.7. Plant layout-objectives and types                                                                                |  |  |  |
| Unit– II                 | 2a. Write the steps in Lean                            | <ul><li>2.1 Concept of Lean manufacturing</li><li>2.2 Steps for implementing the lean manufacturing system.</li></ul> |  |  |  |
| Lean Manufacturing       | manufacturing                                          |                                                                                                                       |  |  |  |
|                          | 2b. State the key principles in lean system            |                                                                                                                       |  |  |  |
|                          | 2c. Identify different types of                        | 2.3 Key principles of Lean system                                                                                     |  |  |  |
|                          | wastes.                                                | 2.4 Types of waste, identification of waste                                                                           |  |  |  |
|                          | 2d. Develop a value stream                             | and 3M                                                                                                                |  |  |  |
|                          | map for a given set of operation.                      | 2.5 Value stream mapping                                                                                              |  |  |  |
|                          |                                                        | 2.6 Benefits of lean manufacturing                                                                                    |  |  |  |

# 5. DETAILED COURSE CONTENTS

GPA

| Unit– III          | 3a. Enlist the need for JIT.                            | 3.1 Introduction JIT.                                          |  |  |
|--------------------|---------------------------------------------------------|----------------------------------------------------------------|--|--|
| Just in Time       | 3b. Develop a Kanban for                                | 3.2 Objectives and elements of JIT                             |  |  |
| Manufacturing      | different situations                                    | 3.3 Industrial Examples of JIT                                 |  |  |
|                    | 3c. Compare push and pull manufacturing                 | 3.4Kanban system and its types                                 |  |  |
|                    | 3d. Identify the situations                             | 3.5 Single piece flow of material                              |  |  |
|                    | where cellular<br>manufacturing is required             | 3.6 Pull and Push manufacturing                                |  |  |
|                    | inanaraetarinig is required                             | 3.7 Cellular manufacturing.                                    |  |  |
| Unit– IV           | 4a. State the measures of                               | 4.1TPM- definition, necessity                                  |  |  |
| Total Productive   | TPM                                                     | 4.2 objectives and measures of TPM                             |  |  |
| Maintenance        | 4b. Give the equation for OEE and state meaning of each | 4.3 Overall Equipment Effectiveness                            |  |  |
|                    | parameter in it.                                        | 4.4 Six Big losses                                             |  |  |
|                    | 4c. State eight pillars of TPM<br>and effects on OEE    | 4.5 Steps in implementing TPM                                  |  |  |
|                    |                                                         | 4.6 Eight pillars of TPM                                       |  |  |
|                    |                                                         | 4.7 Tangible and intangible Benefits of TPM                    |  |  |
| Unit - V           | 5a. Enlist the necessity of                             | 5.1 TQM- Definition, Fundamentals                              |  |  |
| Total Quality      | TQM.                                                    | 5.2 Principles of TQM                                          |  |  |
| Management         | 5b. Compare TQM with ISO.                               | 5.3 Objectives of TQM                                          |  |  |
|                    | 5c. Discuss the benefits of TQM                         | 5.4 Comparison of ISO & TQM                                    |  |  |
|                    | -                                                       | 5.5 Benefits of TQM                                            |  |  |
| Unit – VI          | 6a. State necessity of<br>Workplace mgt.                | 6.1 Workplace organization                                     |  |  |
| Various tools of   | 1 0                                                     | 6.2 Necessity and principles of 5 S                            |  |  |
| Lean Manufacturing | 6b. Develop a Kaizen for a given problem                | 6.3 Concept of kaizen with industrial applications.            |  |  |
|                    | 6c. Develop a Poka-Yoke for a given situation.          | 6.4 POKA-YOKE- Definition, types                               |  |  |
|                    | 6d. Calculate time saving in<br>SMED for a given        | 6.5 Identification and development of<br>Poka- yoke techniques |  |  |
|                    | situation.                                              | 6.6 Concept of SMED with industrial example                    |  |  |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

GPA

|            |                                                   |                   | Distribution Of Theory Marks |            |            |       |  |
|------------|---------------------------------------------------|-------------------|------------------------------|------------|------------|-------|--|
| Unit<br>No | Title Of Unit                                     | Teaching<br>Hours | R<br>level                   | U<br>Level | A<br>Level | TOTAL |  |
| Ι          | Introduction to World class manufacturing System. | 10                | 02                           | 06         | 04         | 12    |  |
| II         | Lean Manufacturing                                | 10                | 02                           | 10         | 06         | 18    |  |
| III        | Just in Time manufacturing                        | 12                | 04                           | 10         | 06         | 20    |  |
| IV         | Total Productive Maintenance                      | 10                | 02                           | 04         | 02         | 08    |  |
| V          | Total Quality Management                          | 08                | 00                           | 04         | 02         | 06    |  |
| VI         | Various tools of Lean<br>manufacturing            | 14                | 02                           | 10         | 04         | 16    |  |
|            | Total                                             | 64                | 12                           | 44         | 24         | 80    |  |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials                                                                        | Hours |
|------------|------|---------------------------------------------------------------------------------------------------------------------------|-------|
| 1          | Ι    | Application of various WCM tools and techniques in a World<br>Class Manufacturing organization and enlist their benefits. | 04    |
| 2          | II   | Apply the lean manufacturing principles and develop a value stream map for a given production line.                       | 04    |
| 3          | III  | Application of JIT philosophy for two given industrial situations.                                                        | 04    |
| 4          | III  | Design and application of KANBAN system for two given industrial situations.                                              | 02    |
| 5          | III  | Application of group technology and design of cellular layout for two given conventional layouts.                         | 04    |
| 6          | IV   | Apply the TPM policy of any two companies to study six big                                                                | 04    |

|   |    | losses and overall equipment effectiveness.                                                                           |    |
|---|----|-----------------------------------------------------------------------------------------------------------------------|----|
| 7 | V  | Application of TQM principles and its comparison with ISO 9000 for given WCM organization.                            | 04 |
| 8 | VI | Application of 5'S' principles for workplace management of two given industrial situations and enlist their benefits. | 04 |
| 9 | VI | Design and application of a Poka-Yoke for a given industrial situation and enlist the benefits.                       | 02 |
|   |    | Total                                                                                                                 | 32 |

## 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- 1. Prepare journals based on practical's performed in laboratory.
- 2. Make a list of world class manufacturing companies through internet search.
- 3. Visit any two industries applying lean techniques to eliminate waste and prepare a report.
- 4. List any five companies using JIT philosophy and write about the results JIT implementation.
- 5. Collect samples of KANBAN card from industries.
- 6. Collect for TPM philosophy of any two industries on internet or by visiting industry.
- 7. Write the details of ISO certified companies which use TQM and ISO standards.
- 8. Make charts of 5 'S' used in any small scale industry.

# 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Demonstration
- c. Seminars and industrial visits
- d. Activity based learning.
- e. Q & A technique.

#### **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                                                             | Author                            | Publication                           |
|-------|--------------------------------------------------------------------------|-----------------------------------|---------------------------------------|
| 1     | World Class<br>Manufacturing                                             | Richard j. Schonberger,           | The Free<br>Press,1996.               |
| 2     | Just- in Time<br>Manufacturing                                           | Korgaonkar M.G.,                  | Macmillan India<br>ltd.,1992          |
| 3     | Automation, Production<br>Systems & Computer<br>Integrated Manufacturing | Mikell P. Groover,                | Pearson Education,<br>Inc., 2001      |
| 4     | Lean Thinking.                                                           | James Womack And<br>Danial Jones, | Free<br>Press Revised Edition<br>2003 |
| 5     | Lean Production<br>Simplified                                            | Pascal L Dennis,                  | Productivity Press, 2007              |

#### 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S. No. | Name of equipment                                           | Brief specification      |
|--------|-------------------------------------------------------------|--------------------------|
| 1.     | Charts for WCM, Plant layout, Lean manufacturing, KANBAN    | Standard size            |
| 2.     | Industrial reports/manuals for<br>TPM,TQM,ISO,5's,POKA-YOKE | As per industrial norms. |
| 3.     | Standard available software's for above course content.     | As per the content.      |

#### 12. LEARNING WEBSITE & SOFTWARE

- a http://www.managementstudyguide.com/world-class-manufacturing.htm
- b http://www.plantengineering.com/single-article/10-steps-to-achieve-world-classmanufacturing-maintenance-practices/ddf17ae1b221218faae1406727eecf62.html
- c http://www.abhinavjournal.com/images/Commerce\_&\_Management/Aug12/15.pdf
- d http://www.wcmconsulting.in/Articles/World%20Class%20Manufacturing\_English.pdf
- e http://www.gobiztech.com/docs/Infor-Seven-Keys-World-Class-Manufacturing.pdf
- f http://leanmanufacturingtools.org/39/lean-thinking-lean-principles/

g http://www.processexcellencenetwork.com/lean-six-sigma-business-

transformation/articles/12-essential-lean-concepts-and-tools

h http://www.toyota-

global.com/company/vision\_philosophy/toyota\_production\_system/just-in-time.html

- i http://www.leanproduction.com/tpm.html
- j http://www.plant-maintenance.com/articles/tpm\_intro.shtml
- k <u>http://asq.org/learn-about-quality/total-quality-management/overview/overview.html</u>

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| S. No | Course Outcome                                                                   |    |    |   |    | P  | Os |   |   |    |    | PSOs | 5  |
|-------|----------------------------------------------------------------------------------|----|----|---|----|----|----|---|---|----|----|------|----|
|       |                                                                                  | 1  | 2  | 3 | 4  | 5  | 6  | 7 | 8 | 9  | 10 | 01   | 02 |
| 1     | Compare world class<br>manufacturing with<br>conventional<br>manufacturing.      | 03 | 03 | - | -  | 03 | -  | - | - | -  | -  | 03   | -  |
| 2     | Use tools of Lean<br>Production for waste<br>elimination.                        | -  | 03 | - | -  | 03 | -  | - | - | -  | -  | -    | 03 |
| 3     | Apply tools of JIT<br>system for minimize<br>inventory.                          | -  | 03 | - | -  | -  | -  | - | - | 03 |    | 03   | 03 |
| 4     | Identify the losses<br>affecting overall<br>equipment<br>effectiveness.          | -  | 03 | - | 03 | -  | -  | - | - | -  | -  | -    | 03 |
| 5     | Apply the principles<br>of TQM for quality<br>improvement and cost<br>reduction. | -  | 03 | - | -  | 03 | 03 | - | - | 03 | -  | -    | -  |
| 6     | Suggest the locations<br>for improvement in<br>workplace using 5S<br>principles. | -  | 03 | - | 03 | -  | -  | - | - | -  | -  | 03   | 03 |

# **Course Curriculum Design Committee**

| Sr<br>No | Name of the faculty members | Designation and Institute                                         |
|----------|-----------------------------|-------------------------------------------------------------------|
| 1        | S. B. Kulkarni              | Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad |
| 2        | V. M. Bukka                 | Lecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad  |

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLE COURSE CODE

# ALTERNATE ENERGY SOURCES

6M508

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Sixth                     |

## 1. RATIONALE

Energy is an important aspect in all sectors of country's economy. The energy crisis is mainly caused due to increased population and enhanced standard of living and life style of people. In future time nearly all the conventional energy sources will be replaced by alternate energy sources all over the globe. Solar and Wind energies play an important role in alternate energy sources. Recently significant advances are made in utilization of solar energy in heating and electrical energy conversion applications. Biomass and bio fuels are also getting importance. Alternative fuels such as Biodiesel, Ethanol are used in practice. Technicians are required to develop, operate and maintain these systems in coming future.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Practice the use of green energy for better future"

#### 3. TEACHING AND EXAMNATION SCHEME

| т  | eaching S | Scheme     | Total              |      | Exami | nation Schen | ne (Marks | )     |
|----|-----------|------------|--------------------|------|-------|--------------|-----------|-------|
|    | Hours/ C  |            | Credits<br>(L+T+P) | Theo | ory   | Pract        | ical      | Total |
| L  | Т         | Р          | С                  | ESE  | РТ    | ESE @        | PA        |       |
|    | -         | -          | C                  |      |       | (OR)         | (TW)      | 150   |
| 4  | -         | 2          | 6                  | 80   | 20    | 25#          | 25        | 150   |
| Du | ration of | the Examin | ation (Hrs)        | 03   | 01    |              |           |       |

**Legends : L-**Lecture; **T-**Tutorial/Teacher Guided Theory Practice ; **PA-** Practical; **C-**Credits; **ESE-** End Semester Examination; **PT – Progressive Test, PA-** Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

# 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Use alternate energy conversion systems in daily practice.
- 2. Identify various energy wastage locations.
- 3. List energy conservation techniques.
- 4. Conduct preliminary energy audit of an installation.
- 5. List various Energy reuse and regeneration methods.

# 5. DETAILED COURSE CONTENTS

| Unit            | Major Learning Outcomes        | Topics And Sub-Topics                     |
|-----------------|--------------------------------|-------------------------------------------|
|                 | (Cognitive Domain Only)        |                                           |
| Unit - I        | 1a.Classify various types of   | 1.1 Introduction to energy and its use.   |
| Introduction to | energy sources                 | Classification of energy sources such as  |
| Energy sources  |                                | conventional, Nonconventional,            |
|                 | 1b.Locate energy crisis        | Renewable, Non renewable, Primary,        |
|                 | situations                     | Secondary, Commercial and Non             |
|                 | 1c.Identify needs of Alternate | Commercial sources. Short introduction to |
|                 | Energy Sources                 | Geothermal, Tidal energy.                 |
|                 |                                | 1.2 Energy Crisis and remedies.           |
|                 |                                | 1.3 Energy scenario in World and in India |
|                 |                                | 1.4 Need of development of Alternate      |
|                 |                                | energy sources                            |
|                 |                                |                                           |

| Unit - II<br>Solar Energy and<br>applications | <ul> <li>2a.Write concepts of solar<br/>energy conversion into heat<br/>and electricity.</li> <li>2b.Develop different solar list<br/>advantages and disadvantages<br/>of solar systems</li> <li>2c.Compare different solar<br/>systems</li> <li>2d.Locate areas of applications<br/>of solar energy.</li> </ul> | <ul> <li>2.1 Principle of conversion of solar energy<br/>into heat and electricity, solar<br/>radiation. Solar radiation's at earth's<br/>surface. Solar radiation geometry-<br/>declination, hour Angle, altitude angle,<br/>incident angle, zenith angle, solar<br/>azimuth angle. Solar radiation<br/>measurement, pyrheliometers, pyranometer</li> <li>Applications of Solar energy-</li> <li>2.2 Classification, construction and<br/>working and applications of typical Flat<br/>plate collectors, Solar concentrating<br/>collectors and their applications,<br/>advantages and limitations.</li> <li>2.3 Space heating and cooling Systems<br/>their classification, working and<br/>applications. Domestic solar heaters their<br/>types and applications.</li> <li>2.4 Photovoltaic electric conversion</li> </ul> |
|-----------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                               |                                                                                                                                                                                                                                                                                                                  | <ul> <li>systems, their classification, working and applications. Direct solar electric conversion systems(Roof top systems)</li> <li>2.5 Solar distillation, Solar cooking and furnace, Solar pumping and Green house, Agriculture and industrial process heat. (No numerical, no derivations.)</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Unit - III<br>Wind Energy &<br>Applications   | <ul> <li>3a.Write concepts of wind<br/>energy conversion.</li> <li>3b.Demonstrate working of<br/>different wind electric systems</li> <li>3c.List advantages and<br/>disadvantages of wind electric<br/>conversion systems</li> <li>3d.Compare different wind<br/>mills/aero generators for</li> </ul>           | <ul> <li>3.1 Introduction, Basic principles of wind energy conversion, power in wind, derivation of available wind power formula, power coefficient, maximum power. Main considerations In selecting a site for wind mills, advantages and limitations of wind energy Conversion, wind energy data</li> <li>3.2 Basic Wind Energy Conversion System (WECS) yaw control, pitch control,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                             |

|                                     | performance<br>3e.Locate areas of applications<br>of wind energy conversion<br>systems                                                                                                                                                                                                                                              | <ul> <li>components, construction and working of horizontal axis wind electric conversion system.</li> <li>3.3 Classification of wind mills/aero generator, construction and working of horizontal And vertical axis wind mills, their comparison, Savonious and Darrius type vertical axis wind mills their construction, working, comparison and applications. Performance of wind machines</li> <li>3.4 Main schemes of wind energy for power generation systems, wind pumping systems.</li> </ul>                                                                                                                                                                       |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit - IV<br>Energy From<br>Biomass | <ul> <li>4.a Write principles biomass<br/>energy conversion<br/>processes</li> <li>4.b Compare biomass energy<br/>conversion processes</li> <li>4.c Write applications of<br/>different Gasifies</li> <li>4.d Write process of<br/>manufacturing of biofuels.</li> <li>4.e Compare various compare<br/>various biofuels.</li> </ul> | <ul> <li>4.1 Common species recommended for biomass,</li> <li>4.2 Methods for obtaining energy from biomass (Biomass conversion) such as Direct Combustion, Thermo chemical conversion and Biochemical conversion.</li> <li>4.3 Thermal gasification of biomass-gasifiers, Types of gasifiers such as up draught. Downdraught and cross draught fixed bed and fluidized bed gasifiers , application of gasifiers</li> <li>4.4 Anaerobic Digestion and fermentation of biomass, biomass digesters, Biomass digester classification and types Agricultural waste as biomass, comparison of biomass with conventional fuels. Biodiesel production and applications.</li> </ul> |
| Unit - V<br>Energy                  | 5a. Write energy conservation<br>on global and national                                                                                                                                                                                                                                                                             | 5.1 Energy conservation and management,<br>global and Indian energy market,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

6M508

| Conservation | basis.                          | anarous scapario in various sectors and                                     |
|--------------|---------------------------------|-----------------------------------------------------------------------------|
| Conservation | Dasis.                          | energy scenario in various sectors and<br>Indian economy                    |
|              | 5b. Identify various factors    | Indian economy                                                              |
|              | affecting energy                | 5.2 Need and importance of energy                                           |
|              | conservation                    | conservation and management,                                                |
|              | 5. Leaster                      | 5.3 concept of payback period, return on                                    |
|              | 5c. Locate various              | investment(ROI), life cycle cost,                                           |
|              | parameters/factors leading      | 5.4 Sankey diagrams, specific energy                                        |
|              | to energy wastage.              | consumption. their applications in                                          |
|              |                                 | industries                                                                  |
| Unit – VI    | 6a. Able understand energy      | 6.1 Distribution of energy consumption,                                     |
| Energy       | distribution and energy         | principle of energy conservation,                                           |
| Conservation | conservation                    | 6.2 Energy audit, types of audits, method                                   |
| Techniques   | 6b. Understand concept of       | of conducting energy audit,                                                 |
|              | energy audit                    | Advantages of energy audit Methods of                                       |
|              | 6c. Appreciate role of energy   | energy conservation.                                                        |
|              | management in energy            | 6.3 Cogeneration and its application,                                       |
|              | conservation.                   | combined cycle system, their                                                |
|              | 6d. Identify areas where energy | advantages, disadvantages and                                               |
|              | audit is required.              | applications.                                                               |
|              | 6e. Locate the areas of energy  | 6.4 Concept of energy management, study                                     |
|              | waste and energy reuse.         | of different energy. Management                                             |
|              |                                 | techniques like- analysis of input, reuse<br>and recycling of waste, energy |
|              |                                 | and recycling of waste, energy education, conservative technique and        |
|              |                                 | energy audit.                                                               |
| Unit –VII    | 7a Identify parameters costing  | 7.1 Costing of utilities like steam,                                        |
| Economics of | various utilities.              | compressed air, Electricity and water used                                  |
| Energy       | 7b Estimate costs of utilities. | in industries.                                                              |
| Conservation | 7c Identify factors improving   |                                                                             |
|              | efficiency of devices and       | 7.2 Ways of improving boiler efficiency,                                    |
|              | systems.                        | Thermal insulation, Critical Thickness of                                   |
|              | 7d Substitute conventional      | insulation, waste heat recovery systems                                     |
|              | system with waste heat          | like exchangers, Regenerators, wheels,                                      |
|              | recovery systems.               | Heat Pipes, their applications.                                             |
|              | 7e Apply energy conservation    | 7.3 Introductory approach of energy                                         |
|              | principles in various           | conservation in compressed air,                                             |
|              | systems.                        | refrigeration systems, Air-conditioning                                     |
|              |                                 | systems, Pumps, Fans.                                                       |
|              |                                 |                                                                             |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                  |                   | Distr      | ibution O  | f Theory   | Marks |
|------------|----------------------------------|-------------------|------------|------------|------------|-------|
| Unit<br>No | Title Of Unit                    | Teaching<br>Hours | R<br>level | U<br>Level | A<br>Level | TOTAL |
| 1          | Introduction to Energy sources   | 5                 | 2          | 3          | 2          | 7     |
| 2          | Solar Energy and applications    | 14                | 4          | 9          | 6          | 19    |
| 3          | Wind Energy & Applications       | 14                | 4          | 9          | 6          | 19    |
| 4          | Energy From Biomass              | 9                 | 3          | 3          | 4          | 10    |
| 5          | Energy Conservation              | 7                 | 2          | 2          | 3          | 7     |
| 6          | Energy Conservation Techniques   | 8                 | 3          | 4          | 3          | 10    |
| 7          | Economics of Energy Conservation | 7                 | 2          | 4          | 2          | 8     |
|            | TOTAL                            | 64                | 20         | 34         | 26         | 80    |

Legends: R – Remember, U – Understand, A – Apply and above (Bloom's revised Taxonomy)

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS (Any 10)

| Sr. No | Unit No | Practical Exercises                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Approx<br>Hours<br>Required |
|--------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|
|        | I,II    | <ul> <li>Collection of technical literature/Specifications</li> <li>Students should collect technical literature/specifications from reputed manufacturers and BIS specifications for following appliances/devices. Students should visit dealers and manufacturers as well as refer web sites of manufacturers and collect the same.</li> <li>Flat plate collector (copper tube type) Solar water heating system ( Along with Installation procedure)</li> <li>Evacuated Tube Collector (EVT) type solar collector</li> <li>House hold solar photovoltaic system (Battery backup type)</li> <li>House hold Net metering Grid connected type direct solar system</li> <li>Solar street lamp</li> <li>Solar pumping systems</li> <li>House hold box type solar cooker</li> <li>Parabolic solar cooker</li> <li>Solar distillation unit</li> </ul> | 02 Hrs                      |
| 2      | Π       | <ul> <li>Trial on Household Box type solar cooker</li> <li>The trial on house hold box type solar cooker shall include following aspects,</li> <li>Study of box type cooker and record of construction and working with sketches.</li> <li>Determination of cooking time for a.Rice b.Dal c.Noodles . d. Peanuts in morning time (9 am to 12 pm) and in afternoon time (2 pm to 5 pm)</li> <li>Plotting graph of Cooking time Vs item</li> <li>Determination of temperature in the box of cooker with probe type thermometer from 7am to 5 pm and plotting of graph of temperature Vs Time</li> </ul>                                                                                                                                                                                                                                            | 04 Hrs.                     |

| 3 | II   | Trial on Household Parabolic type solar cooker                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 04 Hrs  |
|---|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
|   |      | <ul> <li>The trial on house hold Parabollic type solar cooker shall include following aspects,</li> <li>Study of Parabolic type cooker and record of construction and working with sketches.</li> <li>Determination of cooking time for a. Rice b. Dal c. Noodles . d. Peanuts in morning time (9 am to 12 pm) and in afternoon time (2 pm to 5 pm)</li> </ul>                                                                                                                                                                                                                                                                          |         |
|   |      | <ul> <li>Plotting graph of Cooking time Vs item</li> <li>Determination of temperature in the box of cooker with probe type thermometer from 7am to 5 pm and plotting of graph of temperature Vs Time.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                        |         |
| 4 | I,II | <ul> <li>Study and observation of operation of Roof top Direct solar energy converting system supplying electrical energy to appliances as well as to MSEB.</li> <li>Here following steps should be followed,</li> <li>Location of system.</li> <li>Obtaining specification/ capacity of system with sketching layout of system along with noting the operational principle of system.</li> <li>Observing operation of system and noting no. of units generated per day and per month, number of units consumed by customer and number of units given/sold to MSEB per day and per month.</li> <li>Systematic record in file</li> </ul> | 02 Hrs  |
| 5 | I,II | <ul> <li>Observation and trial on Flat Plate Collector Solar Water heating system</li> <li>The trial on Flat Plate Collector Solar Water heating system shall include following aspects,</li> <li>Study of Flat Plate Solar Water heating system and record of construction and working with sketches along with specifications.</li> <li>Determination of Maximum temperature of water</li> <li>Recording maintenance steps for Flat Plate Solar Water heating system</li> </ul>                                                                                                                                                       | 02 Hrs. |

|    |      | • Listing advantages and Disadvantages of system.                                                                                              |         |
|----|------|------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| 6  | I,II | Observation and trial on Evacuated Tube Collector Solar<br>Water heating system                                                                | 04 Hrs  |
|    |      | The trial on Evacuated Tube Collector Solar Water heating system shall include following aspects,                                              |         |
|    |      | • Study of Evacuated Tube Collector Solar Water heating system and record of construction and working with sketches along with specifications. |         |
|    |      | • Determination of Maximum temperature of water                                                                                                |         |
|    |      | Recording maintenance steps for Evacuated Tube Collector<br>Solar Water heating system                                                         |         |
|    |      | Listing advantages and Disadvantages of system                                                                                                 |         |
| 7  | I,II | Visit to plant of solar heating system for hotel/hostel/railway station etc.                                                                   | 02 Hrs  |
| 8  | II   | Study and observation of solar street lamp system                                                                                              | 02 Hrs. |
| 9  | III  | Visit to wind farm and observation of operation of Horizontal axis<br>Aero generator type wind energy conversion system.                       | 04Hrs   |
| 10 | IV   | To visit a biomass/ biogas plant of municipal waste or private owned.                                                                          | 04 Hr   |
| 11 | V,VI | Perform energy audit for workshop/Office/Home/SSI unit.                                                                                        | 04 Hr   |
| 12 | VII  | Study of various waste heat recovery devices like heat exchangers, regenerators, heat pipe practically in industry.                            | 02 Hrs  |
| 13 | II   | Study of solar energy conversion systems like solar cars, solarboilers, Solar energy system of satellites, Solar railways etc                  | 02 Hr   |

# NOTE: Any TEN Practical's from above list.

a. It is compulsory to prepare a journal for exercises. It is also required to get each exercise recorded in journal, checked and duly dated signed by teacher.PA component of practical marks is dependent on continuous and timely evaluation of exercises.

b. Term work report must not include any photocopy/ies, printed manual/pages, litho, etc. It must be hand written / hand drawn by student only.

c. Mini project and presentation topic/area has to be assigned to the students in the beginning of the term by batch teacher.

d. Student activities are compulsory and are part of term work.

e. Term work content of industrial visit report should also include following.

i. Brief details of industry visited.

ii. Type, location, products, rough layout, human resource, etc of industry.

iii. Details, description and broad specifications of machineries/ processes observed.

iv. Safety norms and precautions observed.

v. Student's own observation on industrial environment, productivity concepts, quality consciousness and quality standards, cost effectiveness, culture and attitude.

vi. Any other details / observations asked by accompanying faculty.

#### 8. SUGGESTED STUDENTS ACTIVITIES

| Sr. | Activities                                                                             |
|-----|----------------------------------------------------------------------------------------|
| No  |                                                                                        |
| 1   | Search different journals on solar energy, wind energy, biomass.                       |
| 2   | Collect info on specifications of solar and wind energy conversion systems             |
| 3   | Collect information on special solar direct energy conversion systems                  |
| 4   | Assemble circuits/devices operating on solar energy in your laboratory.                |
| 5   | Design Fabricate small solar cooker with different designs in laboratory.              |
| 6   | Design Fabricate small wind aero generator with different designs in laboratory        |
| 7   | Conduct energy audit of your class room and give suggestions to reduce energy wastage. |
| 8   | Design and implement energy conservation education program for your department         |

## 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

| Sr. | Unit no | Unit name                      | Strategy                                                             |
|-----|---------|--------------------------------|----------------------------------------------------------------------|
| no  |         |                                |                                                                      |
| 1   | Ι       | Introduction to Energy sources | Class room instructions ,Net survey,                                 |
| 2   | II      | Solar Energy and applications  | Class room instructions ,Net survey,<br>Videos, field demonstrations |

| 3 | III | Wind Energy & Applications     | Live explanation, movie, field demonstrations, visits                                  |
|---|-----|--------------------------------|----------------------------------------------------------------------------------------|
| 4 | IV  | Energy From Biomass            | Class room instructions, Videos,<br>PPT, Practical demonstrations,<br>Industrial vists |
| 5 | V   | Energy Conservation            | Class room instructions ,Net survey,<br>Case study, industrial visits                  |
| 6 | VI  | Energy Conservation Techniques | Class room instructions ,Net survey,<br>Case study, industrial visits                  |

# **10. SUGGESTED LEARNING RESOURCE**

| Sr. no | Title of Book                        | Author            | Publication             |
|--------|--------------------------------------|-------------------|-------------------------|
| 1      | Non conventional energy resources    | Dr B.H.Khan       | Tata McGraw Hill        |
| 2      | Non conventional energy<br>Resources | . G. D. Rai       | . Khanna publication    |
| 3      | Solar energy                         | S. P. Sukhatme    | Tata McGraw Hill        |
| 4      | Solar energy                         | H. P. Garg        | Tata Macgrawhill        |
| 5      | Power plant engineering              | Arora Domkundwar  | Dhanpat Rai & co.       |
| 6      | India- The energy sector             | P.H. Henderson    | Oxford University Press |
| 7      | Industrial energy conservation       | D. A. Ray         | Pergaman Press          |
| 8      | Non-conventional energy source       | K. M. Mittal      | Khanna publications     |
| 9      | Energy resource management           | Krupal Singh Jogi |                         |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr. No. | Major equipment/ Instrument with Broad Specification  | Quantity |
|---------|-------------------------------------------------------|----------|
| 1       | House hold box type cooker                            | 01       |
| 2       | Household parabolic cooker                            | 01       |
| 3       | Flat Plate Collector Solar Water heating system       | 01       |
| 4       | Evacuated Tube Collector type water heating system    | 01       |
| 5       | Digital temperature measuring device (Probe type)     | 01       |
| 6       | Specimen Mounting Press                               | 01       |
| 7       | Working model of solar photovoltaic conversion system | 01 set   |
| 8       | Working model of solar street lamp                    | 01       |

#### **12. LEARNING WEBSITE & SOFTWARE**

- a. Website for Akshay Urja News Bulletin. (www.mnes.nic.in)
- b. www.mnre.gov.in
- c. mnre.gov.in/schemes/solar-rd-projects/v.
- d. <u>www.iisc.ernet.in/insa/ch34.pdf</u>
- e. www.ireda.gov.in/
- f. www.zenmanenergy.org/
- g. windeis.anl.gov/guide/basics/
- h. www.suzlon.com/

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| Sr.No | Course Outcome                                                   | POs |   |   |   |   |   |   | PSOs |   |    |    |    |
|-------|------------------------------------------------------------------|-----|---|---|---|---|---|---|------|---|----|----|----|
|       |                                                                  | 1   | 2 | 3 | 4 | 5 | 6 | 7 | 8    | 9 | 10 | 01 | 02 |
| 1     | Use alternate energy<br>conversion systems<br>in daily practice. | 3   | 2 | 2 | 2 | 1 | 1 | - | -    | 2 | 2  | 1  | 2  |
| 2     | Identify various<br>energy wastage<br>locations.                 | 3   | 2 | 1 | 2 | 2 | 1 | - | -    | 1 | 1  | 2  | -  |
| 3     | List energy<br>conservation<br>techniques.                       | 2   | 2 | - | 1 | - | 2 | - | -    | 2 | 2  | 3  | -  |

| 4 | Conduct preliminary<br>energy audit of an<br>installation.  |   | 3 | - | 3 | - | - | 1 | 1 | 1 | 1 | 2 | 2 |
|---|-------------------------------------------------------------|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | List various Energy<br>reuse and<br>regeneration<br>methods | 3 | 2 | - | 1 | - | 1 | 1 | - | 1 | 2 | 3 | - |

# **Course Curriculum Design Committee**

SrName of the<br/>faculty membersDesignation and Institute1S.P. ShiralkarLecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad2A.B. DeshpandeLecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLE COURSE CODE

### METROLOGY AND QUALITY CONTROL

6M505

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Sixth                     |

#### 1. RATIONALE

The course Engineering Metrology and quality control makes the student to understand the process of measurement, the measuring instrument and its care and maintenance. The student should also understand the concept of quality control needed in any industry. Also the student should be able to use various measuring instruments, select the appropriate instrument for a particular application.

#### 2. COMPETENCY

"Measure various parameters by using different measuring instruments"

#### 3. TEACHING AND EXAMNATION SCHEME

| Teaching Scheme |                                   | Total | Examination Scheme (Marks) |        |    |                  |            |       |  |
|-----------------|-----------------------------------|-------|----------------------------|--------|----|------------------|------------|-------|--|
|                 | (Hours/ C                         |       | Credits<br>(L+T+P)         | Theory |    | Theory Practical |            | Total |  |
| L               | Т                                 | Р     | С                          | ESE    | РТ | ESE<br>(PR)      | PA<br>(TW) | 150   |  |
| 3               | -                                 | 2     | 5                          | 80     | 20 | 25#              | 25         | 150   |  |
| Du              | Duration of the Examination (Hrs) |       |                            |        |    |                  |            |       |  |

**Legends :** L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; **PR**- Practical; C-Credits; **ESE**- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

#### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- 1. Select relevant measuring instruments for various industrial jobs.
- 2. Use a standard operating procedure for measurement and calibration.
- 3. Select proper chart for process capability study of a set of jobs from industry.
- 4. Set various measuring instruments for different jobs.

5. Analyze the data obtained from measurement for SQC.

# 5. DETAILED COURSE CONTENTS

| Unit            | Major Learning Outcomes          | Topics And Sub-Topics                          |
|-----------------|----------------------------------|------------------------------------------------|
|                 | (Cognitive Domain Only)          |                                                |
| Unit –I         | 1a. Differentiate between        | 1.1. Definition of metrology                   |
| Fundamentals Of | Accuracy and precision.          | 1.2. Needs of inspection,                      |
| Metrology And   | 1b. Describe need for            | 1.3. Common terminology used such as           |
| Basics of       | Inspection and calibration       | accuracy, precision, sensitivity,              |
| Measurement.    | 1c. Justify selection of type of | magnification errors, and sources of errors.   |
|                 | standard for particular          | 1.4. Concept of calibration.                   |
|                 | measurement.                     | 1.5. Linear Measurement - Vernier Caliper,     |
|                 | 1d. Describe Linear              | steel rule, Micrometer.                        |
|                 | measurement and Angular          | 1.6. Line standard, end standard and           |
|                 | Measurement                      | wavelength standard                            |
|                 | 1e. Explain working of           | 1.7. Angular measurement                       |
|                 | different instruments for        | 1.8. Construction & working of bevel           |
|                 | Linear measurement and           | protractor, sine bar, angle gauges             |
|                 | Angular Measurement              |                                                |
| Unit– II        | 2a. Differentiate between Hole   | 2.1 Basic terminology of limits and Fits.      |
| Limits, Fits &  | Basis System and Shaft           | 2.2 Types of fits, hole basis System and shaft |
| Gauges:         | Basis System.                    | basis system of fits.                          |
|                 | 2b. Apply the principle of       | 2.3 Types of gauges – Plug gauges, snap        |
|                 | Gauge Design to compute          | gauges, ring gauges and relation gauges.       |
|                 | tolerance for different jobs     | 2.4 Taylor's principle of gauge Design and     |
|                 | 2c. Use different types of       | Simple numerical on tolerance                  |
|                 | Gauges a given                   | calculations.                                  |
|                 | measurement                      |                                                |
| Unit– III       | 3a. Select a Comparator for a    | 3.1 Principle of comparators                   |
| Comparators     | given application.               | 3.2 Operation of various comparators.          |
|                 | 3b. Compare various              | 3.3 Characteristics of a good comparator,      |
|                 | comparators                      | 3.4 Dial indicator as mechanical               |
|                 |                                  | comparator,                                    |
|                 |                                  | 3.5 Pneumatic comparator – Solex and           |
|                 |                                  | high pressure dial type, Electric              |
|                 |                                  | comparators,                                   |
|                 |                                  | 3.6 Relative merits and demerits of various    |
|                 |                                  | comparators.                                   |

| Unit                                                                    | Major Learning Outcomes                                                                                                                                                                                                                                                                                                                   | Topics And Sub-Topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                         | (Cognitive Domain Only)                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Unit– IV<br>Screw Thread &<br>Gear Measurement                          | <ul> <li>4a. Identify different types of thread, various parameters and errors in threads.</li> <li>4b. Use various instruments for measuring thread parameters.</li> <li>4c. Identify various gear tooth elements.</li> <li>4d. Use various instruments for measuring gear tooth parameters.</li> </ul>                                  | <ul> <li>4.1 Terminology of screw thread,</li> <li>4.2 Errors in threads,</li> <li>4.3 Measurement of various parameters,<br/>of screw threads such as major<br/>diameter, minor diameter, effective<br/>diameter, pitch using instruments –<br/>screw thread micrometer, floating<br/>carriage micrometer,</li> <li>4.4 Gear terminology,</li> <li>4.5 Measurement of chordal thickness,<br/>addendum using gear tooth vernier,<br/>Parkinson gear tester,</li> </ul>                                                                                                                                                                                                        |
| Unit – V<br>Surface Finish<br>Measurement &<br>Testing Techniques       | <ul> <li>5a. Describe Surface finish.</li> <li>5b. Draw Symbol representing<br/>surface finish.</li> <li>5c. Use of various instruments<br/>to measure surface finish.</li> <li>5d. Draw a setup for alignment<br/>testing different types of<br/>machines.</li> </ul>                                                                    | <ul> <li>5.1 Importance of surface finish and Terminology.</li> <li>5.2 Symbol representing surface finish on drawing,</li> <li>5.3 Principle &amp; operation of stylus probe instrument</li> <li>5.4 Tomlinson surface meter and Taylor-Hobson surface Talysurf.</li> <li>5.5 Straightness testing by straight edge &amp; autocollimator,</li> <li>5.6 Flatness testing by optical flats,</li> <li>5.7 Various cases of squareness testing, parallelism testing by using dial indicator, circularity testing (Roundness testing) using dial indicator.</li> <li>5.8 Machine Tool Testing:- Alignment test to be carried out on lathe machine and drilling machine</li> </ul> |
| Unit – VI<br>Basic Concepts Of<br>Quality And<br>Introduction To<br>SQC | <ul> <li>6a. Describe Quality, quality control and quality assurance function.</li> <li>6b. Use a statistical control technique for a given data</li> <li>6c. Predict the capability of process for a given data by means different control chart.</li> <li>6d. Apply a quality control tool for solving a industrial problem.</li> </ul> | <ul> <li>6.1 Definitions of quality, quality characteristics,</li> <li>6.2 Need of quality control, quality of design, quality of performance, and quality of conformance.</li> <li>6.3 Quality function cost of quality, value of quality, quality control.</li> <li>6.4 Quality assurance – concept, quality mindedness, quality audit.</li> <li>6.5 Quality circle – concept, purpose, function</li> <li>6.6 Basic statistical concepts like mean, mode, median, standard deviation, dispersion, Process capability and indices - C<sub>p</sub>, C<sub>pk</sub>,</li> </ul>                                                                                                |

GPA

# Metrology And Quality Control

|                                             |                                                                                                                                                                                  | <ul> <li>6.7 Concept of variable data &amp; attribute data, control charts for variables and attributes.</li> <li>6.8 Concept of Acceptance sampling, sampling plans, O.C. curve,</li> <li>6.9 Seven Q.C. tools such as ISHIKAWA diagram, scatter diagram, Parato diagram</li> </ul> |
|---------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit – VII<br>Recent Trends in<br>Metrology | <ul><li>7a. Describe working principle<br/>and purpose of coordinate<br/>measuring machine.</li><li>7b. Compare multi-gauging<br/>inspection and online<br/>inspection</li></ul> | <ul> <li>7.1 Introduction to CMM</li> <li>7.2 Working principle,</li> <li>7.3 Purpose,</li> <li>7.4 Advantages,</li> <li>7.5 Classification of CMM,</li> <li>7.6 Multi Gauging Inspection.</li> </ul>                                                                                |
|                                             | 1                                                                                                                                                                                | 7.7 Online Inspection.                                                                                                                                                                                                                                                               |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

|            |                                                      |                                 | Distr | ibution O  | f Theory   | Marks |
|------------|------------------------------------------------------|---------------------------------|-------|------------|------------|-------|
| Unit<br>No | Title Of Unit                                        | Teaching<br>Hours<br>R<br>level |       | U<br>Level | A<br>Level | TOTAL |
| Ι          | Fundamentals Of Metrology                            | 08                              | 00    | 08         | 04         | 12    |
|            | And Basics of Measurement.                           | <u></u>                         |       | <u> </u>   |            |       |
| II         | Limits, Fits & Gauges                                | 04                              | 00    | 04         | 04         | 08    |
| III        | Comparators                                          | 04                              | 02    | 03         | 03         | 08    |
| IV         | Screw Thread & Gear<br>Measurement                   | 06                              | 02    | 06         | 04         | 12    |
| V          | Surface Finish Measurement &<br>Testing Techniques   | 10                              | 02    | 12         | 02         | 16    |
| VI         | Basic Concepts Of Quality And<br>Introduction To SQC | 12                              | 04    | 07         | 07         | 18    |
| VII        | Recent Trends in Metrology                           | 04                              | 00    | 04         | 02         | 06    |
| Total      |                                                      | 48                              | 10    | . 44       | 26         | 80    |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

# 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

| Sr.<br>No. | Unit | Title Practical/ Lab. Work/ Assignments/ Tutorials           | Hours |
|------------|------|--------------------------------------------------------------|-------|
| 1          | Ι    | Use of basic measuring instruments such as vernier caliper,  | 04    |
|            |      | vernier height gauge, Vernier depth gauge, outside           |       |
|            |      | micrometer, inside micrometer for measurement of actual jobs |       |

6M505

|    |     | Total                                                                                                                                                                                                                                          | 32 |
|----|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|
| 10 | VI  | To draw P & C chart for the data taken in the industry.                                                                                                                                                                                        | 02 |
| 9  | VI  | To draw X & R chart for a given data of 50 readings actually measured in industry.                                                                                                                                                             | 02 |
| 8  | VI  | To draw a frequency histogram for a set of 50 readings<br>measured for a particular quality characteristic on 50 jobs<br>from industry. Calculation of standard deviation, process<br>capability.                                              | 04 |
| 7  | V   | Use of optical flat for flatness testing.                                                                                                                                                                                                      | 02 |
| 6  | IV  | Use of gear tooth vernier for chordal thickness and addendum measurement.                                                                                                                                                                      | 02 |
| 5  | V   | Use of surface finish testing machine to observe surface finish<br>(Ra) values for specimens of grinding finish, lapping finish,<br>honing finish, turning, milling, shaping                                                                   | 04 |
| 4  | IV  | Use of screw thread micrometer and floating carriage<br>micrometer (Two wire method ) to measure effective diameter                                                                                                                            | 04 |
| 3  | III | protractor<br>Use of dial indicator as a mechanical comparator. 50 jobs<br>manufactured on any machine by single operator for a<br>particular dimension is checked as per job drawing with<br>tolerances e.g. O.D. of shaft within 10 microns. | 04 |
| 2  | Ι   | from industryUse of slip gauge to find unknown gap.Set the sine bar for given angle and verify the angle by bevel                                                                                                                              | 04 |

# 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- 1. Carry out market survey for various metrological instruments.
- 2. Analyze the specifications, costs, quality and availability for various types of measuring instruments and equipments.
- 3. Interact with supplier/trader and discuss about SOP's for use of measuring instruments.
- 4. Designing software for data acquisition and SQC.
- 5. Allow students to repeat the experiment in order to achieve complete understanding.
- 6. Search online PPT's, PDF's, video's on the operation and maintenance of the instruments
- 7. Search for modern equipments on internet.

# 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars and Industry visits
- e. Activity based learning

# **10. SUGGESTED LEARNING RESOURCE**

| S.No. | Name of Book                                                                                                                                                   | Author        | Publication                         |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|-------------------------------------|
| 1     | Engineering Metrology                                                                                                                                          | R. K. Jain    | Khanna Publications                 |
| 2     | Engineering Metrology                                                                                                                                          | P. K. Sinha   | BPB Publications                    |
| 3     | Metrology                                                                                                                                                      | M.S. Mahajan  | DhanapatRai and co.<br>Publications |
| 4     | Statistical Quality control                                                                                                                                    | M. S. Mahajan | DhanapatRai and co.<br>Publications |
| 5     | Handbook of Metrology                                                                                                                                          |               | ASTME                               |
| 6     | Quality, Planning and<br>Analysis                                                                                                                              | J. M. Juran   | Tata McGraw Hill<br>Publications    |
| 7     | IS codes:<br>IS 919-1993 Limit, fits<br>& tolerances<br>IS 2029-1962 Dial gauges<br>IS 2909-1964 Guide for<br>selection of fits<br>IS 2984-1966 Slip<br>gauges |               |                                     |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| S.<br>No. | Name of equipment                                                                                       | Brief specification                                             |
|-----------|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|
| 1.        | Simple Vernier, simple micrometer, digital<br>Vernier, digital micrometer, height gauge, depth<br>gauge | Depth guage -Range 0-150 mm, with interchangeable anvils        |
| 2.        | Different types of limit gauges and slip gauges                                                         | Slip gauges-M 105 (high standard)                               |
| 3         | Dial indicator and Solex air gauge                                                                      | As per industry specification                                   |
| 4         | Screw thread micrometer and floating carriage micrometer                                                | Base- Made of regged C.I Metal,<br>maximum lagitude measurement |

GPA

|   |                                                   | 90 mm, maximum transverse<br>measurement 30 mm each side, list<br>count for zero indicator 0.01mm,<br>list count of micrometer 0.001mm,<br>micromenter range 0-25 mm,<br>Master piece diameter m16 *2<br>terrain, 1.35 mm (3 wire method)                                                                                                                |
|---|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 5 | Gear tooth Vernier caliper, Parkinson gear tester | As per industry specification                                                                                                                                                                                                                                                                                                                            |
| 6 | Taylor Hobson Talysurf, Tomlinson surface meter   | As per industry specification                                                                                                                                                                                                                                                                                                                            |
| 7 | Autocollimator, optical flats                     | As per industry specification                                                                                                                                                                                                                                                                                                                            |
| 8 | Surface Roughness Tester                          | Parameters Ra, Rz, Measuring<br>Range Ra: 0.05 ~10.0 $\mu$ m Rz: 0.1<br>~ 50.0 $\mu$ m, Cut-off Length 0.25,<br>0.8 and 2.5 mm, Tracing Length 6<br>mm, Tracing Speed 1.0 mm/sec,<br>Measuring Lengths 1.25, 4.0 and<br>5.0 mm, Accuracy: +/-15%, Pick-<br>up: Piezoelectric, Stylus Tip:<br>Diamond, radius 5 +/- 1 $\mu$ m,Angle:<br>90° (+5° or -10°) |

# **12. LEARNING WEBSITE & SOFTWARE**

- a) http://www.bakergauges.com/product-list.php
- b) http://www.faro.com/products/faro-software/cam2-measure-10/overview
- c) http://www.mitutoyo.co.jp/eng/pdf/E4329\_QuickGuide.pdf
- d) http://www.mitutoyo.co.jp/eng/
- e) http://promec.com.tr/en/services/measurement-test/
- f) http://www.sigmetrix.com/case-studies-2/gdt-case-studies-and-whitepapers/gdt-basics/
- g) http://www.sigmetrix.com/products/gdt-software/
- h) http://www.bombaytools.in/surface-roughness.html
- i) http://www.winspc.com/products/winspc

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| S  | Course Outcome                                                                            |   | POs |   |   |   |   |   |   | PSOs |    |    |    |
|----|-------------------------------------------------------------------------------------------|---|-----|---|---|---|---|---|---|------|----|----|----|
| No |                                                                                           |   |     |   |   |   |   |   |   |      |    |    |    |
|    |                                                                                           | 1 | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9    | 10 | 01 | 02 |
| 1  | Select relevant measuring<br>instruments for various<br>industrial jobs.                  | 2 | 3   | 2 | 2 | 1 | - | - | - | -    | 2  | 2  | 1  |
| 2  | Use a standard operating<br>procedure for<br>measurement and<br>calibration.              | 2 | 3   | 3 | 2 | 1 | - | - | 2 | 1    | 2  | 2  | 2  |
| 3  | Select proper chart for<br>process capability study<br>of a set of jobs from<br>industry. | 2 | 2   | 2 | 2 | - | - | - | 2 | -    | 1  | 2  | 1  |
| 4  | Set various measuring<br>instruments for different<br>jobs.                               | 2 | 2   | 3 | 2 | - | - |   | 1 | -    | 2  | 2  | 2  |
| 5  | Analyze the data obtained<br>from measurement for<br>SQC.                                 | 2 | 3   | 2 | 2 | - | - | - | 1 | 1    | 1  | 2  | -  |

## **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 A.W Nemade Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad
- 2 V.M Bukka Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad

(Member Secretary PBOS)

(Chairman PBOS)

# COURSE TITLEINTERNAL COMBUSTION ENGINESCOURSE CODE6M407

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Sixth                     |

#### 1. RATIONALE

Considering the vital importance of the I.C. engines, it is utmost necessary to give exposure to the diploma engineers as regards the important and basic aspects of I.C. engines. Diploma engineers come across the I.C. engines in his/her all the while in the operating areas of Production, Maintenance, and processing etc. Combustion systems in both the S.I. and C.I. engines are covered with emphasis on detonation Knock, Octane rating and Cetane Rating, I.C. engine fuels like conventional fuels along with Alternative fuels like Methanol, Ethanol, LPG, CNG, Bio-Diesel etc. are also covered. Testing and performance aspects and .Advances in I.C. engines like Wankel engines, Stratified charge I.C. engines, direct injection gasoline engines, variable compression ratio engines are also being covered. The contents in I.C Engines will make student understand & apply the knowledge about various system, subsystems & their interrelationships

#### 2. COMPETENCY

At the end of studying this course students will be able to "The course content should be taught and implemented with the aim to develop a competency to apply the basics of I.C engine and carry out the trial on four stroke S.I and C.I engines"

| Teaching Scheme                   |          |          | Total<br>Credits |        | Examin | nation Schen | ne (Marks | )      |  |        |  |        |  |  |  |       |      |       |
|-----------------------------------|----------|----------|------------------|--------|--------|--------------|-----------|--------|--|--------|--|--------|--|--|--|-------|------|-------|
| (                                 | Hours/ C | credits) | (L+T+P)          | Theory |        | Theory       |           | Theory |  | Theory |  | Theory |  |  |  | Pract | ical | Total |
| T                                 | т        | Р        | С                | ESE    | РТ     | ESE          | PA        |        |  |        |  |        |  |  |  |       |      |       |
| L                                 | I        | 1        | C                | LSL    | 11     | (OR)         | (TW)      | 150    |  |        |  |        |  |  |  |       |      |       |
| 4                                 | -        | 2        | 6                | 80     | 20     | 25#          | 25        | 130    |  |        |  |        |  |  |  |       |      |       |
| Duration of the Examination (Hrs) |          |          | 03               | 01     |        |              |           |        |  |        |  |        |  |  |  |       |      |       |

#### 3. TEACHING AND EXAMNATION SCHEME

**Legends : L**-Lecture; **T**-Tutorial/Teacher Guided Theory Practice ; **P**- Practical; **C**- Credits; **ESE**- End Semester Examination; **PT** – **Progressive Test**, **PA**- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online Examination.

## 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

- a Maintain the fuel feed system used in S.I and C.I engines.
- b Maintain the cooling, lubrication & ignition systems used in S.I and C.I engines.
- c Trial on four stroke Petrol/Diesel engine.
- d Prepare, analyze and interpret heat balance sheet
- e Dismantle and assemble four stroke Petrol / diesel engine / Solex carburetor
- f Trial on petrol and diesel exhaust gas analyzer and analyze the results.

# 5. DETAILED COURSE CONTENTS

| Unit                                              | Major Learning Outcomes<br>(in cognitive domain)                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Topics and Sub-topics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|---------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Unit-I<br>Engine Types<br>And Fuel Feed<br>System | <ul> <li>(in cognitive domain)</li> <li>1a. Enlist different types of IC<br/>Engines</li> <li>1b. Differentiate between two<br/>stroke and four stroke<br/>engines</li> <li>1c. Components of engines</li> <li>1d. State applications of I.C.<br/>engines</li> <li>1e. Explain various systems<br/>of carburetor</li> <li>1f. Describe working of<br/>simple carburetor</li> <li>1g. Describe Solex<br/>carburetors</li> <li>1h. Explain MPFI system</li> <li>1i. Describe fuel Injection</li> </ul> | <ul> <li>A) INTRODUCTION TO ENGINES AND</li> <li>ITS TYPES</li> <li>1.1 Types of engines, I.C. Engine classification,</li> <li>1.2 Two stroke &amp; Four stroke engines</li> <li>1.3 Petrol &amp; Diesel engine, their construction and working, Comparison</li> <li>1.4 I.C. engine applications <ul> <li>B) S.I. ENGINES:</li> <li>1.5 Properties of Air-fuel mixture, Mixture</li> <li>requirements for starting, Idling, slow speed and acceleration</li> <li>1.6 Carburetor :</li> <li>-Working and limitations of simple carburetor.</li> <li>-Working of Solex carburetor</li> <li>1.7 Multi Port Fuel Injection System (M.P.F.I.)</li> <li>- Concept of Petrol injection</li> <li>Fuel injection system components like Fuel injector, Fuel pump, Throttle sensor, Oxygen sensor, Engine coolant sensor, Manifold absolute pressure sensor, Mass air flow sensors. ECU &amp; ECU operating engine map.</li> <li>- Limitations of MPFI systems.</li> <li>C) C.I. ENGINES:</li> </ul> </li> </ul> |
|                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | -Requirements and Types of Injection systems                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

6M407

|                 | pump                            | -Conventional plunger type fuel pump,                                                  |
|-----------------|---------------------------------|----------------------------------------------------------------------------------------|
|                 | Pamb                            | Rotary fuel pump,                                                                      |
|                 |                                 | -Fuel injectors, Types of nozzles                                                      |
| Unit – II       | 2a. Describe battery ignition   | 2.1 Ignition System:                                                                   |
| I.C. Engine     | system                          | -Types of ignition systems<br>Working of Pattery and Magneto ignition                  |
| systems         | 2b. Differentiate mechanical    | -Working of Battery and Magneto ignition systems, Electronic ignition systems with and |
| systems         |                                 | without contact breakers                                                               |
|                 | and electronic ignition         | 2.2 Cooling system:                                                                    |
|                 | system                          | -Need of cooling system                                                                |
|                 | 2c. State need of cooling       | -Types of cooling systems as Air-cooling                                               |
|                 | system                          | system, liquid and pressurized liquid cooling system.                                  |
|                 |                                 | -Relative Advantages and disadvantages.                                                |
|                 | 2d. Describe different types of | 2.3 Lubrication system:                                                                |
|                 | cooling system                  | -Need of lubrication system                                                            |
|                 | 2e. Give advantages of splash   | -Different lubrication systems like splash,                                            |
|                 |                                 | modified splash and pressurized lubrication                                            |
|                 | lubrication system over         | systems<br>-types of lubricants, lubricant additives and                               |
|                 | pressurized lubrication         | their advantages                                                                       |
|                 | system                          | ulen udvallages                                                                        |
| Unit – III      | 3a. Explain stages of           | 3.1 Combustion in S.I. engines:                                                        |
|                 | Combustion in SI and CI         | -Introduction                                                                          |
| Combustion      |                                 | - Stages of combustion                                                                 |
| in I.C. Engines | engines                         | - Effects of engine parameters on ignition lag, flame propagation                      |
|                 | 3b. Describe detonation and     | 3.2 - Abnormal combustion - Detonation or                                              |
|                 | theories of detonation          | Knocking                                                                               |
|                 | 3c. State effect of engines     | - Theories of detonation                                                               |
|                 |                                 | - Effect of engine variables on knocking                                               |
|                 | variables on knocking           | <ul><li>Disadvantages and Control of detonation.</li><li>Pre ignition</li></ul>        |
|                 | 3d. Describe fuel rating        | - Octane rating of fuel,                                                               |
|                 | 3e. Explain delay period        | 3.3. Combustion in C.I. Engines:                                                       |
|                 |                                 | - Air-fuel ratio in C.I. engines                                                       |
|                 |                                 | - Stages of combustion                                                                 |
|                 |                                 | - Delay period or ignition lag,<br>3.4 Diesel knock                                    |
|                 |                                 | - Methods of controlling diesel knock                                                  |
|                 |                                 | 3.5 C.I. engine combustion chambers                                                    |
|                 |                                 | - Principles of combustion chamber design                                              |
|                 |                                 | as Open, Swirl, Man chambers                                                           |
|                 |                                 | - Cold starting of CI engines.                                                         |

| I Lo:4 IV/      | 4. Eucloic Structure 6               | 4.1 Lature dy stien                                                           |
|-----------------|--------------------------------------|-------------------------------------------------------------------------------|
| Unit – IV       | 4a. Explain Structure of             | <ul><li>4.1 Introduction</li><li>4.2 Structure of Petroleum</li></ul>         |
|                 | Petroleum                            | 4.3 Products of refining process                                              |
| I.C.Engine      | 4b. Describe refining process        | 4.4 Fuels for SI engines                                                      |
| Fuels           |                                      | 4.5 Octane number requirements (ONR)                                          |
|                 | 4c. Explain Octane number            | 4.6 Diesel fuels                                                              |
|                 | 4d. Describe Non-Petroleum           | 4.7 Non – petroleum fuels                                                     |
|                 | fuels                                | 4.8 Additives                                                                 |
|                 | Tuels                                | 4.9 Alternative fuels such as Alcohols, Bio-                                  |
|                 |                                      | diesel& blended fuels                                                         |
| Unit– V         | 5a. Describe performance             | 5.1 Introduction                                                              |
|                 | parameters                           | 5.2 Performance parameter                                                     |
| Testing And     | 5b. Describe different               | 5.3 Basic Measurements<br>Measurements of speed, fuel consumption, air        |
| Performance of  |                                      | consumption, exhaust smoke, B.P., I.P. & F.P.                                 |
| I.C.Engines     | Measuring instruments                | Willan's line method, Morse test & Motoring                                   |
|                 | 5c. Explain Efficiencies and         | test                                                                          |
|                 | Specific consumption                 | 5.4 Efficiencies and Specific Fuel Consumption (SFC's)                        |
|                 | 5d. Describe heat balance            | 5.5 Heat balance and heat balance sheet.                                      |
|                 | sheet                                | (Numerical on above testing & performance)                                    |
| Unit– VI        | 6a. Describe Wankel engine           | 6.1 Elementary introduction to Wankel engine                                  |
|                 | Explain Stratified charge            | 6.2 Stratified charge engine (Direct Injection                                |
|                 | engine                               | Engines)                                                                      |
| Advances In     | 6b. Describe compression             | 6.3 Variable compression ratio engines                                        |
| I. C. Engines   | ratio engines                        | 6.4 Stirling engines                                                          |
|                 | 6c. Describe Sterling engine         | 6.5 Supercharging of I.C. engines.                                            |
|                 | 6d. Explain Supercharging of         | Introduction                                                                  |
|                 | I.C. engines                         | Objectives of supercharging                                                   |
|                 |                                      | Supercharging limits                                                          |
|                 | 7. Evaluin a allution from           | Methods of supercharging, multi fuel engines                                  |
| Unit– VII       | 7a. Explain pollution from<br>Petrol | <ul><li>7.1 Introduction</li><li>7.2 Pollutants from petrol engines</li></ul> |
|                 | 7b. Describe sources of              | Sources of pollution                                                          |
| Environmental   | Pollution                            | Exhaust emissions                                                             |
| Air Pollution & | 7c. Describe Petrol engine           | Effect of engine maintenance on exhaust                                       |
| Control         | emission control                     | emissions                                                                     |
|                 | 7d. Explain Diesel emission          | 7.3 Petrol engine emission control –                                          |
|                 | -                                    | Engine design modifications                                                   |
|                 |                                      | Exhaust gas oxidation methods                                                 |
|                 |                                      | Exhaust emission control by fuel variations                                   |
|                 |                                      | Blow by control                                                               |
|                 |                                      | Control of Oxides of nitrogen by Exhaust Gas                                  |
|                 |                                      | Recirculation Method (EGR)                                                    |

| Total emission package, Therpackage, Catalytic converter, package, Catalytic conver, package, catalytic converter, package, c |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|

## 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

| Unit | Unit Title                              | Teaching | Distribution of Theory Marks |            |            |             |
|------|-----------------------------------------|----------|------------------------------|------------|------------|-------------|
| No.  |                                         | Hours    | R<br>Level                   | U<br>Level | A<br>Level | Total Marks |
| Ι    | Engine Types and Fuel feed<br>systems   | 14       | 04                           | 10         | 08         | 22          |
| Π    | I.C. engine systems                     | 10       | 02                           | 06         | 04         | 12          |
| III  | Combustion in I.C. engines              | 10       | 02                           | 06         | 04         | 12          |
| IV   | I.C. engine fuels                       | 06       | 00                           | 04         | 02         | 06          |
| V    | Testing and performance of I.C. engines | 10       | 02                           | 06         | 06         | 14          |
| VI   | Advances in I.C. engines                | 06       | 00                           | 02         | 04         | 06          |
| VII  | Environmental air pollution and control | 08       | 02                           | 04         | 02         | 08          |
|      | Total                                   | 64       | 12                           | 38         | 30         | 80          |

*Legends: R* – *Remember, U* – *Understand, A* – *Apply and above (Bloom's revised Taxonomy)* 

#### 7. LIST OF PRACTICAL / LABORATORY EXPERIENCES/ TUTORIALS

Perform at least (**10 experiments**) from the list. Teachers are instructed to make use of laboratory model, equipment's and websites matter for best teaching-learning process.

| Sr.<br>No. | Unit<br>No. | <b>Practical Exercises</b><br>(Outcomes in Psychomotor Domain) | Approx.<br>Hrs.<br>required |
|------------|-------------|----------------------------------------------------------------|-----------------------------|
| 1          | Ι           | Demo of motorized Multi-cylinder Petrol Engine to study        | 02                          |
|            |             | sections of engine, location & function of different parts.    |                             |

| 2  | Ι                                                           | Demo of motorized Multi-cylinder Diesel Engine to study             | 02        |  |
|----|-------------------------------------------------------------|---------------------------------------------------------------------|-----------|--|
|    | sections of engine, location & function of different parts. |                                                                     |           |  |
|    |                                                             | Dismantle and assemble any one type Modern Bike/Scooter             |           |  |
| 3  | Ι                                                           | Carburetor to study various Carburetion systems & carburetor        | 04        |  |
|    |                                                             | working                                                             |           |  |
|    |                                                             | Demo of Diesel atomization (fog), Injector spray, fuel pump parts&  |           |  |
| 4  | IV                                                          | complete working of Diesel supply system of single cylinder Diesel  | 02        |  |
|    |                                                             | engine (From tank to injector)                                      |           |  |
|    | П                                                           | Dismantling & assembly of Tappet side of Multi-cylinder             | 04        |  |
| 5  |                                                             | engine to study tappet side complete details (Performance on        | <b>VT</b> |  |
|    |                                                             | Dismantling & assembly of Head & Block sections of Multi-           | 04        |  |
| 6  | Ι                                                           | cylinder engine to study complete details ( Performance on          |           |  |
|    |                                                             | SCODA engine)                                                       |           |  |
|    |                                                             | Complete Dismantling & assembly of Multi-cylinder engine to         |           |  |
| 7  | Ι                                                           | study all sections, parts, locations, functions, etc. (Performance  | 04        |  |
|    |                                                             | on MARUTI 800 engine)                                               |           |  |
| 8  | V                                                           | Trial on Fuel Injection Pump (FIP) bench for calibration of         | 02        |  |
|    |                                                             | Diesel Pump                                                         |           |  |
|    | VI                                                          | Demonstrate a) M.P.F.I. system of Petrol engine b) C.R.D.I. system  | 02        |  |
| 9  |                                                             | of Diesel engine                                                    |           |  |
|    |                                                             | Trial on single cylinder 4-stroke Diesel Engine to calculate        |           |  |
| 10 | v                                                           |                                                                     | 04        |  |
| 10 |                                                             | i) IP ii) BP iii) Thermal Efficiency iv) Prepare heat balance sheet |           |  |
|    |                                                             | Case study of Firing Order of Four, Five & Six cylinder engines     |           |  |
| 11 | VI                                                          | used in cars                                                        | 02        |  |
|    |                                                             |                                                                     |           |  |
|    | II                                                          | Demo of liquid cooling system and lubrication system on actual I.C. | 02        |  |
| 12 |                                                             | engine & animation videos                                           | 02        |  |
| 13 |                                                             | Visit to PUC center & collection sample certificates for            |           |  |
|    | VII                                                         | pollution analysis. Comparative study of Bharat stage 4 &           | 02        |  |
|    | * 11                                                        | Bharat stage 6 norms                                                | 02        |  |
|    |                                                             |                                                                     |           |  |
| 14 |                                                             | Demonstrate & study of Battery and Magneto Ignition systems on      | 02        |  |
|    | 1                                                           |                                                                     |           |  |

|    | actual cars & using audio-visuals from website                                                                                                 |        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| 15 | Search of information/videos about Exhaust gas analyzer & EGR<br>systems in engines and prepare presentation based on it. (minimum 10<br>PPTs) | 04     |
|    |                                                                                                                                                | 32 Hrs |

### 8. SUGGESTED STUDENTS ACTIVITIES

Other than class room and laboratory activities following are the suggested guided cocurricular student's activities which need to be undertaken to facilitate the attainment of various course outcomes of this course. The students are required to maintain portfolio of their experiences which he/ she will submit at the end of the term.

- a. Prepare a report on multi cylinder engines / single cylinder engines and other sub assemblies/systems available in mechatronics (Mercedez Benz) & Yamaha Training School.
- b. Prepare a report on engine testing/component testing/PUC testing available in institute and nearby centers.
- c. Visit to a small garage to observe the trouble shooting of various systems present in th I.C. engine.

### 9. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

- a. Improved Lecture methods-
- b. Q & A technique.
- c. Demonstration
- d. Seminars
- e. Activity based learning

# **10. SUGGESTED LEARNING RESOURCE**

| Sr.No. | Title of Book       | Author             | Publication           |
|--------|---------------------|--------------------|-----------------------|
| 1      | Internal Combustion | Mathur and Sharma, | Dhanpatrai and Sons   |
|        | Engines             |                    |                       |
| 2      | Internal Combustion | Ganeshan,          | ТМН                   |
|        | Engines             |                    |                       |
| 3      | Internal Combustion | Maleev             | Dhanpatrai and Sons   |
|        | Engines             |                    |                       |
| 4      | High Speed Internal | Ricardo            | Dhanpatrai and Sons   |
|        | Combustion Engines  |                    |                       |
| 5      | Internal Combustion | Obert              | ТМН                   |
|        | Engines             |                    |                       |
| 6      | Mechanical          | KirpalsinghVol     | Standard publications |
|        | Engineering         | I and Vol II       |                       |
| 7      | Mechanical          | R.P.Sharma         | Dhanpatrai& sons      |
|        | Engineering         | ,S.CHAND           |                       |
| 8      | Diesel Engines      | - Heissler –SAE    | Standard publications |
|        |                     | publications       |                       |

# 11. LIST OF MAJOR EQUIPMENTS AND MATERIALS REQUIRED :

| Sr.No. | Name of the Equipment                           | Specification              |
|--------|-------------------------------------------------|----------------------------|
| 1      | Four stroke petrol engine.                      | As per given specification |
| 2      | Four stroke diesel engine.                      | As per given specification |
| 3      | Two stroke petrol engine.                       | As per given specification |
| 4      | Four-stroke petrol engine test rig              | As per given specification |
| 5      | Four stroke diesel engine test rig              | As per given specification |
| 6      | Solex carburetor.                               | As per given specification |
| 7      | MPFI system of car like Maruti ,Hyundai, Indica | As per given specification |
| 8      | Battery and Magneto Ignition systems.           | As per given specification |
| 9      | Exhaust gas analyzer                            | As per given specification |
| 10     | EGR systems in engines                          | As per given specification |

# 12. LEARNING WEBSITE & SOFTWARE

| 1  | https://www.nptel.ac.in/courses |
|----|---------------------------------|
| 2  | https://www.k12reader.com       |
| 3. | https://www.eduaction.com       |
| 4. | https://www.k5learning.com      |
| 5. | https://www.english4u.com       |

# 13. MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| CO. NO. | Course Outcome                             | Р | Р | Р | Р | Р | Р | Р | Р | Р | Р  | Р | Р |
|---------|--------------------------------------------|---|---|---|---|---|---|---|---|---|----|---|---|
|         |                                            | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0  | S | S |
|         |                                            | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 0 | 0 |
|         |                                            |   |   |   |   |   |   |   |   |   |    | 1 | 2 |
|         | Maintain the fuel feed system used in S.I  | 2 | 3 | 1 | 1 | 1 | 1 | - | - | - | 1  | - | 1 |
| CO1     | and C.I engines                            |   |   |   |   |   |   |   |   |   |    |   |   |
|         | Maintain the cooling, lubrication &        | 1 | 2 | 3 | 2 | 1 | 1 | - | - | - | 2  | 2 | 3 |
| CO2     | ignition systems used in S.I and C.I       |   |   |   |   |   |   |   |   |   |    |   |   |
|         | engines.                                   |   |   |   |   |   |   |   |   |   |    |   |   |
| CO3     | Trial on four stroke Petrol/Diesel engine. | 1 | 2 | 3 | 3 | 1 | 1 | - | 1 | 1 | 1  | 3 | 2 |
|         | Prepare, analyze and interpret heat        | 2 | 2 | 2 | 2 | - | 1 | - | 1 | 1 | 1  | 2 | - |
| CO4     | balance sheet                              |   |   |   |   |   |   |   |   |   |    |   |   |
|         | Dismantle and assemble four stroke         | 1 | 2 | 2 | 2 | - | - | - | 3 | - | 2  | 1 | 2 |
| CO5     | Petrol / diesel engine / Solex carburetor  |   |   |   |   |   |   |   |   |   |    |   |   |
|         | Trial on petrol and diesel exhaust gas     | 1 | 2 | 3 | 3 | 1 | 3 | 2 | 1 | 1 | 1  | 2 | 2 |
| CO6     | analyzer and analyze the results.          |   |   |   |   |   |   |   |   |   |    |   |   |

### **Course Curriculum Design Committee**

- Sr Name of the Designation and Institute
- No faculty members
- 1 R.N Khadse Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad
- 2 G.G Ghuge Lecturer in Mechanical Engineering, Govt. Polytechnic, Aurangabad
- 3 V.B Kumavat Lecturer in Mechanical Engineering, Govt Polytechnic, Aurangabad (Member Secretary PBOS) (Chairman PBOS)

# COURSE TITLEVOCATIONAL TRAININGCOURSE CODE6M503

#### **PROGRAMME & SEMESTER**

| Diploma Programme in which this course is offered | Semester in which offered |
|---------------------------------------------------|---------------------------|
| Mechanical                                        | Sixth                     |

#### 1. RATIONALE

A technician is responsible for the quality supervision, production/construction/ development and repairs and maintenance of different engineering machines / equipment's / structures in related area of engineering. Vocational training course is mainly integrated with theoretical knowledge and practical experiences and various situations of performing the jobs correctly actually on sites / Industries. While working in the industry a technician is employed for planning, preparation, supervision, and quality control. Arrangement of materials, labours and equipment's are also the additional role of a technician. Vocational training will provide an opportunity to relate theoretical knowledge and its field / industry applications, quality assurance of processes and safety measures. It also provides hands on experience of various activities and standard practices along with enhancement of employability skills.

#### 2. COMPETENCY

At the end of studying this course students will be able to

"Relate, verify and apply theoretical knowledge and procedures to field / industrial practice and situations through observation, participation and hands on experience to supervise the manufacturing/construction/ development and maintenance of engineering entities as a self / wage employee"

#### 3. TEACHING AND EXAMNATION SCHEME

| Т                                 | eaching s | Scheme | Total              | Examination Scheme (Marks) |        |                  |            |     |
|-----------------------------------|-----------|--------|--------------------|----------------------------|--------|------------------|------------|-----|
|                                   | (Hours/ C |        | Credits<br>(L+T+P) | Theo                       | Theory |                  | Practical  |     |
| L                                 | Т         | Р      | С                  | ESE                        | РТ     | ESE @<br>(PR/OR) | PA<br>(TW) | 100 |
| -                                 | -         | 4      | 4                  |                            |        | 50#              | 50         | 100 |
| Duration of the Examination (Hrs) |           |        |                    |                            |        |                  |            |     |

Legends : L-Lecture; T-Tutorial/Teacher Guided Theory Practice ; P- Practical; C- Credits; ESE- End Semester Examination; PT – Progressive Test, PA- Progressive Assessment, OR – Oral Examination, TW - Term Work, # External, @ Internal,~ Online examination.

### 4. COURSE OUTCOMES

At the end of studying this course students will be able to: -

1. Supervise various processes in manufacturing / erection / execution and

maintenance of machines / systems / machines as per standard code of practices.

- 2. Assists in project planning, execution, monitoring and management.
- 3. Identify and solve the field problems and communicate effectively to various agencies /

Stake- holders.

- 4. Plan and observe safety measures in Industry / field.
- 5. Test the materials / products / works for its conformity with quality parameters.
- 6. Prepare a Report of training experiences.

### 5. DETAILED COURSE CONTENTS

Following are the general guidelines for implementation of Vocational training

1 Student studying in Final year diploma engineering program is expected to work in group 4-5 students for vocational training. Each group shall work under the guidance of a regular employee (engineer) of the industry as a trainee in a Major (Large) /medium /small industry (Civil/Mechanical/ Electrical/Electronic Computer/IT/Garment manufacturing) for four weeks. (This includes 3/ 4 days of orientation, 3 weeks of working in industry and report preparation in sixth semester (2hrs /week).

2 Finally the students in group shall prepare the report of his vocational training under the guidance of the teaching staff members which may consists of observations, drawings, sketches, sample calculations / simple designs, processes, procedures, applications, managements, costing aspects. Student should deliver a seminar on his training experiences.

3 Vocational Training is to be undertaken after fifth semester's end examination.)

#### **Role of Department:**

- 1. Department have to send training request letter to various industries well in advance before commencement of training.
- 2. After getting sufficient number of seats from the industries/garages, students will be placed in different industries/garages for their 5th semester training.
- 3. Students will have to fill up training form.(attached here with form-1)
- 4. Department will issue an order letter to industry for the said training mentioning the name and registration number of students.
- 5. All above activities have to be carried out in advance of previous semester as plan out of placement in consultation with industry & students.
- During the training period, the head of the department will maintain a schedule for follow up
  of industrial training and according to it he/she will send the guide faculty members to various
  industries.
- 7. The faculty member during the visit to industry will check the progress of the student in the training, his/ her attendance, discipline and daily diary preparation.
- 8. The department has to keep record of above progressive assessment during visits of teachers to industry.
- 9. At the end of the training internal faculty member and industry representative will assess the work done by student based on his presentation at the institute and training report.

| Sr. | Unit No. | Practical Exercises                                                                                                      | Approx. Hrs. required                                                   |
|-----|----------|--------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| No. |          | (Outcomes in Psychomotor Domain)                                                                                         |                                                                         |
|     |          | Term work                                                                                                                |                                                                         |
| 1   | А        | Identify the industry. Take concerns and<br>depute the groups along with faculty<br>members. Daily Visits for vocational | 32* Hrs- Min<br>Semester Break Activity.<br>32 Hours in sixth semester. |

|    |       | <ul> <li>training, Completion of training by<br/>maintaining daily dairy under guidance<br/>of site / Industry Engineer and faculty.</li> <li>(Following activities B-I to B IV may<br/>also be considered during this period.)</li> </ul>  |                      |
|----|-------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| 2. | B- I  | also be considered during this period )<br>Collect and analyze site / industry data<br>on Planning, preparation, erecting,<br>production, manufacturing & quality<br>control aspects as per the daily dairy<br>recorded at site / industry. | 08                   |
| 3  | B-II  | Preparing rough draft along with collected drawings. Maps and designs / calculations or tables.                                                                                                                                             | 08                   |
| 4  | B-III | Group discussion in presence of guide<br>Give presentation - ppts / models / charts<br>/ drawings etc. in a group .                                                                                                                         | 08                   |
| 5  | B-IV  | Prepare Final draft with all attachments.<br>Spiral Binding of the vocational training<br>work and term work completion.                                                                                                                    | 08                   |
|    | I     | Total Hours.                                                                                                                                                                                                                                | $32^* + 32 = 64$ hrs |

# 6. SUGGESTED SPECIFICATION TABLE FOR QUESTION PAPER DESIGN

- I) Aspects to be considered for Vocational training / report writing of it.
- a. Planning, preparation & quality control for various activities and processes.
- b. Management of materials, labor's & equipment's,
- c. To solve the minor industrial problems.
- d. Develop the Entrepreneurial skills.
- e. Develop ability to work in a team.
- f. To enhance the presentation skills
- g. Vocational training reports preparations & cost analysis,
- h. To be familiar with financial sources.

# II) SUGGESTED AREAS FOR THE VOCATIONAL TRAINING WORK (PROGRAMME SPECIFIC) FOR:MECHANICAL

# (FOLLOWING INDUSTRIES OR ANY OTHER APPLICABLE INDUSTRY SUGGESTED BY TEACHER)

| Sr. No | Area of Mechanical<br>Engineering              | Suggested Industries                                                                                                                                                                                                                                                                                                                                                                       |
|--------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1      | Automobile field                               | Automobile Service Station<br>Auto workshop / Garage<br>ST workshop/ City transport workshop<br>Automobile manufacturing / auto component<br>manufacturing units<br>Auto Engine Testing unit<br>Wheel Balancing unit                                                                                                                                                                       |
| 2      | Manufacturing field/<br>Processing field       | Engineering Workshop ,CNC shop<br>Tool mfg. unit. ,fabrication unit<br>Plastic material processing unit<br>Sugar Factory / Dairy / Chemical Industry /<br>Thermal Power Plant.<br>Food processing unit.<br>auto component manufacturing units<br>Mechanical component manufacturing units<br>Heat treatment plants<br>Machine mfg. industries.<br>Forging industry.<br>Steel mfg. indutry. |
| 3      | Measurement /Quality control<br>/Testing field | Material testing laboratories in industries<br>Quality control labs in industries.<br>Calibration centre units.<br>Measurement Lab.                                                                                                                                                                                                                                                        |
| 4      | Refrigeration and Air<br>Conditioning.         | Dairy Plant<br>Ice plant<br>Refrigeration and air conditioning component<br>manufacturing.<br>Refrigeration and air conditioning servicing units<br>Cold storage.                                                                                                                                                                                                                          |
| 5<br>6 | Design /CAD-CENTRE.<br>Govt./Non-Govt. Agency  | Design software industries.<br>IGTR tool room.<br>CIPET.                                                                                                                                                                                                                                                                                                                                   |

# 7. SUGGESTED SPECIFIC INSTRUCTIONAL STRATERGIES

These are sample strategies, which a teacher can use to facilitate the attainment of course outcomes.

a. Consider Local / Institute problem or problem related to society for providing technical solution.

- b. Visit the site.
- c.Take permission of concerned authority.
- d. Follow Instructions.
- e. Write daily dairy regularly at site.
- f. Prepare sketches on dairy / on plain pages.
- g. Collect drawings and leaflets.
- h. Group discussions.
- i. Prepare report.
- j. Prepare power point presentation for final assessment of vocational training.

# A ) VOCATIONAL TRAINING REPORT FORMAT:

Title page

- Certificate
- Abstract
- Acknowledgement
- Index
- Introduction of industry/garage

Industry lay out (at training place)

• Hierarchy of industry/organization chart.

• Types of major equipment's/instruments/machines used in industry with their specification, approximate cost and specific use.

• Particulars of Practical Experiences in industry.

• Additional data/information on – cost reduction, repair, Safety features, cost estimates of major repairs, modifications, etc.

- Special/challenging experiences encountered during training if any
- References
- Bibliography

### **REPORT FORMAT**

- a. Vocational Training report shall be in the print form on A-4 size white bond paper.
- b. Typing shall be in Times New Roman with spacing of 1.5 using one side of paper.
- c. Margins: Left = 37.5 mm Right, Top and Bottom = 25mm.
- d. Front page : Titles TNR 18 bold , other TNR 14 bold. With Institute Logo.
- e. Inner Pages : Titles –TNR 14 Bold , other TNR 12 .
- f. Page Nos :Should appear on the right hand top corner of each page starting after index page.
- g. Tables to be preferable in the Text format only.
- h. Sketches to be drawn on separate sheet / pages in black ink .
- i. The Last content in the index to be of references. Acknowledgement to be added in the report.

Binding: Spiral binding is preferred for the Vocational training report. The number of copies are to be prepared by the student are 7 nos. ( if, 5 Student + Guide +Department Copy)

# B ) DAILY DIARY FORMAT GOVERNMENT POLYTECHNIC, AURANGABAD

#### **Mechanical Engineering Department**

| VOCATIONAL T                                   | RAINING DAILY DIARY               |
|------------------------------------------------|-----------------------------------|
| Period of Vocational training (4 Weeks) : From |                                   |
| Address of Industry / Site:                    |                                   |
| DAY NO :                                       | Date:                             |
| OBSERVATIONS                                   | S OF THE DAY                      |
| Signature of Student                           | Signature of Engineer In-charge   |
|                                                | Signature of Diffilteer in charge |
| Signature of Guide                             | Signature of Head of Dept.        |

# **C:PERMISSION LETTER:**



Government Polytechnic Aurangabad (An Autonomous institute of Govt. of Maharashtra) Osmanpura, Aurangabad. Phone : 2334724/2321917/2353644 Resi: 2331562 GRAM : POLYTECH Fax "2334724 E-mail: <u>gpaur@rediffmail.com</u>

No.GPA/Mechanical/In-plant tra./ Date: / /

To,

-----

\_\_\_\_\_

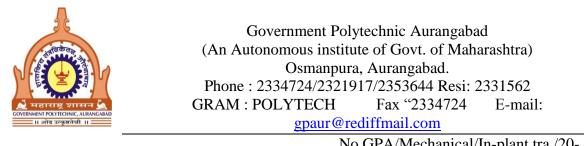
Subject: placement for In-plant Training for the Final Year Students from date .....

To .....

Dear sir,

It is my pleasure to inform you that, Government Polytechnic, Aurangabad is an Autonomous Institute of Maharashtra since 1994. This Institute has introduced In-plant Training of the student as a part of curriculum of the final year Mechanical Engineering Diploma in addition to the project work with a view to provide an opportunity of the industrial exposure to the Mechanical Engineering Students.

During the In-plant Training Students are expected to learn by attending the construction site and record or observe the various technical details /daily constructional activities with the problem solving methods in – liaison with the site Engineer In – charge of the project. Student will be working / observing the activity of the construction under the guidance of the Site Engineer, without causing any inconvenience in a day to day functioning of the site for the said period. Later our student will prepare a brief report for the same and will submit to this institute as a part of their term – work for further assessment. Students are required to develop the following skill during their training.


- 1. Planning data collection, process and execution of the project.
- 2. Material, labour and equipment management.
- 3. Constructional and cost aspects.
- 4. Progress and comparisons.
- 5. Quality control and entrepreneurship aspects.

Kindly grant the permission for the placement of the following group of students at your industry for the guidance to our students in order to gain the industrial experience during the In-plant Training work.

| Sr | Enrollment No |         | of | the | Mobile  | no | of | Name of the guide sign |
|----|---------------|---------|----|-----|---------|----|----|------------------------|
| No |               | student |    |     | student |    |    | & mobile no            |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |
|    |               |         |    |     |         |    |    |                        |

Thanking you sir, and co – operation from your end expected for this academic work.

Principal, Govt. Polytechnic, Aurangabad



No.GPA/Mechanical/In-plant tra./20-Date : / /20 <u>UNDERTAKING TO BE SUBMITTED BY THE STUDENTS UNDERGOING IN – PLANT</u> <u>TRANING</u>

I, the undersigned students of final year Mechanical Engineering of this Institute for the academic year 2014-15 hereby give undertaking to abide by the below rules stipulated by the Department of Mechanical Engineering, Government Polytechnic Aurangabad.

The rules to abide by me during the In-plant Training shall be,

- 1. I shall report the industry / organization on the stipulated scheduled without fail.
- 2. I shall observe and follow all the rules enforced by the industry / organization.
- 3. I shall attend the work at the industry of placement as per the schedule.

- 4. I shall bear the transportation, food and other charges if required for the daily visits to the industry during the training schedule.
- 5. I shall observe all the safety precaution at the deputed site during the training.
- 6. I shall take whole responsibility regarding any untoward incidents or any mishaps occurred at the site and will not make any claims of compensation from Government Polytechnic, Aurangabad or from the deputed industry / organization as I am attending the same as per my wish.
- 7. I shall obey the instruction of my guide and the Site Engineer during the training.
- 8. I shall work at the construction site In liaison with Site Engineer, without causing any inconvenience day to day functioning of the deputed site for the said period.
- 9. I shall be liable for action for any indiscipline during the training period.
- 10. I shall collect the certificate of attendance and relieving letter from the industry.

Date: Place : Aurangabad Name of Guide: Signature : Name of Student: Enrollment No: Mobile No: Permanent address:

### CERTIFICATE

Date :

Place :

Seal

Signature

### 8.SUGGESTED LEARNING RESOURCE

Visit to institute library to find the related text books.

| Sr No | Title of Book                 | Author                  | Publication            |
|-------|-------------------------------|-------------------------|------------------------|
|       |                               |                         |                        |
|       |                               |                         |                        |
| 1     | As per site details / area of | Refer Books, I.S. Cod   | es, Hand Books,        |
|       | vocational training.          | Standard specifications | s, Manuals of Govt     |
|       |                               | Depts, National and In  | ter-national journals. |
|       |                               |                         |                        |

## 9. Major Equipment/ Instrument with Broad Specifications

| 1. | Daily Diary write up and taking signature of In-charge Engineer.                                      |
|----|-------------------------------------------------------------------------------------------------------|
| 2. | Interactions with, Managers /Engineers, Contractors, Trainers ,technicians, and labours at site/field |
| 3. | Report preparation and Final presentation of work done.                                               |

### **10. LEARNING WEBSITES:**

Search on WEB for related construction / Industrial sites.

1. www.google.com

- 2. www.youtube.com
- 3. websites related to Mechanical Engg.sites.

# 11.MAPPING OF PROGRAMME OUTCOMES (POs) AND PROGRAMME SPECIFIC OUTCOMES (PSOs) WITH COURSE OUTCOMES (COs)

| 0.  | Course Outcome       |   |   | ] | Progr | amme | e Out | come | S |   |    | PS | PS |
|-----|----------------------|---|---|---|-------|------|-------|------|---|---|----|----|----|
| NO. |                      |   |   |   |       |      |       |      |   |   |    | 01 | 02 |
|     |                      | 1 | 2 | 3 | 4     | 5    | 6     | 7    | 8 | 9 | 10 |    |    |
|     |                      |   |   |   |       |      |       |      |   |   |    |    |    |
|     | Supervise various    |   | 3 |   | 3     |      |       |      |   |   |    |    | 2  |
| CO1 | processes in         |   |   |   |       |      |       |      |   |   |    |    |    |
|     | /manufacturing /     |   |   |   |       |      |       |      |   |   |    |    |    |
|     | erection / execution |   |   |   |       |      |       |      |   |   |    |    |    |
|     | and maintenance of   |   |   |   |       |      |       |      |   |   |    |    |    |
|     | machines / systems / |   |   |   |       |      |       |      |   |   |    |    |    |
|     | machines as per      |   |   |   |       |      |       |      |   |   |    |    |    |
|     | standard code of     |   |   |   |       |      |       |      |   |   |    |    |    |

|     | practices                                                                                                             |       |   |   |      |       |      |   |   |
|-----|-----------------------------------------------------------------------------------------------------------------------|-------|---|---|------|-------|------|---|---|
| CO2 | Assists in project<br>planning, execution,<br>monitoring and<br>management                                            | <br>1 |   |   | <br> | <br>  | <br> |   | 2 |
| CO3 | Identify and solve<br>the field problems<br>and communicate<br>effectively to<br>various agencies /<br>stake-holders. | <br>  | 3 | 3 | <br> | <br>1 | <br> | 1 |   |
| CO4 | Plan and observe<br>safety measures in<br>Industry / field                                                            | <br>2 | 3 |   | <br> | <br>  | <br> | 2 | 2 |
| CO5 | Test the materials /<br>products / works for<br>its conformity with<br>quality parameters.                            | <br>3 |   |   | <br> | <br>2 | <br> | 2 | 2 |
| CO6 | Prepare a Report of training experiences                                                                              | <br>3 | 3 |   | <br> | <br>  | <br> |   | 2 |

# **Course Curriculum Design Committee**

| Sr.<br>No | Name of the faculty members | Designation and Institute                                     |
|-----------|-----------------------------|---------------------------------------------------------------|
| 1.        | Smt.J.S.Patil               | Head of Department Civil Engg. Govt. Polytechnic, Aurangabad. |
| 2.        | Shri. Y.N.Shaikh            | Lecturer in Civil Engineering, Govt. Polytechnic, Aurangabad  |

(Member Secretary PBOS)

(Chairman PBOS)

# EQUIVALANCE SUBJECT FROM 3<sup>RD</sup> to 4<sup>th</sup> REVISION

|                | 3 <sup>rd</sup> revision      | Curriculun     | n                 |                  |                | 4 <sup>th</sup> revision (              | Curriculum     |                   |                  | Diff | in credit |
|----------------|-------------------------------|----------------|-------------------|------------------|----------------|-----------------------------------------|----------------|-------------------|------------------|------|-----------|
| Course<br>code | Course name                   | Theory credits | Practical credits | Total<br>Credits | Course<br>code | Course name                             | Theory credits | Practical credits | Total<br>Credits | Plus | Minus     |
| GE151          | Communication skill           | 2              | 2                 | 4                | 4G301          | English                                 | 3              | 2                 | 5                | 1    |           |
| GE152          | Basic Mathematics             | 4              | 0                 | 4                | 4G101          | Basic<br>Mathematics(BMT)               | 4              | 0                 | 4                | 0    |           |
| GE153          | Engineering<br>Mathematics    | 4              | 0                 | 4                | 4G102          | Engineering<br>Mathematics (EMT)        | 4              | 0                 | 4                | 0    |           |
| GE154          | Basics Science                | 3              | 2                 | 5                | 4G104          | Engineering<br>Chemistry                | 4              | 2                 | 6                | 1    |           |
| GE155          | Applied Science               | 3              | 2                 | 5                | 4G103          | Engineering Physics                     | 4              | 2                 | 6                | 1    |           |
| GE156          | Workshop Practice             | 0              | 4                 | 4                | 4G105          | Work Shop Practice<br>(WP)              | 0              | 3                 | 3                |      | 1         |
| GE157          | Engineering<br>Graphics       | 1              | 2                 | 3                | 4G106          | Engineering Graphics<br>(EGR)           | 2              | 2                 | 4                | 1    |           |
| GE158          | Basics of computer<br>systems | 1              | 2                 | 3                | 4G107          | Basics of Computer<br>System (BCS)      | 1              | 2                 | 3                | 0    |           |
| ME251          | Workshop<br>Technology        | 2              | 4                 | 6                | 4M208          | Mechanical<br>Technology                | 2              | 3                 | 5                |      | 1         |
| ME252          | Electrical<br>Engineering     | 2              | 2                 | 4                | 4M301          | Basics of electrical<br>Engineering and | 4              | 2                 | 6                |      | 2         |
| ME253          | Basic Electronics             | 2              | 2                 | 4                |                | Electronics                             |                |                   |                  |      |           |
| ME254          | Engineering<br>Drawing        | 2              | 4                 | 6                | 4M201          | Engineering Drawing                     | 2              | 4                 | 6                |      | 0         |
| ME255          | Engineering<br>Mechanics      | 3              | 2                 | 5                | 4M204          | Applied Mechanics                       | 4              | 2                 | 6                | 1    |           |
| ME256          | Theory of<br>Machines         | 4              | 2                 | 6                | 4M406          | Theory of Machines                      | 3              | 2                 | 5                |      | 1         |
| ME257          | Thermal<br>Engineering        | 3              | 2                 | 5                | 4M205          | Thermal Engineering                     | 3              | 2                 | 5                | 0    |           |
| ME258          | Manufacturing<br>Processes    | 2              | 4                 | 6                | 4M202          | Manufacturing<br>Processes              | 2              | 4                 | 6                | 0    |           |
| ME259          | Strength Of<br>Materials      | 3              | 2 5 4M            |                  | 4M412          | Strength Of Materials                   | 4              | 2                 | 6                | 1    |           |

|                | 3 <sup>rd</sup> revision               | Curriculun     | ı                 |                  |                | 4 <sup>th</sup> revision 0          | Curriculum     |                   |                  | Diff | in credit |
|----------------|----------------------------------------|----------------|-------------------|------------------|----------------|-------------------------------------|----------------|-------------------|------------------|------|-----------|
| Course<br>code | Course name                            | Theory credits | Practical credits | Total<br>Credits | Course<br>code | Course name                         | Theory credits | Practical credits | Total<br>Credits | Plus | Minus     |
| ME260          | Fluid Power                            | 3              | 2                 | 5                | 4M401          | Fluid Power                         | 3              | 2                 | 5                | 0    |           |
| ME261          | Machine Drawing                        | 2              | 4                 | 6                | 4 M402         | Machine Drawing                     | 2              | 4                 | 6                | 0    |           |
| GE371          | Material<br>Management                 | 3              |                   | 3                | 4M415          | Material Management                 | 4              | 2                 | 6                | 3    |           |
| GE372          | Financial<br>Management                | 3              |                   | 3                | 4G305          | Industrial<br>Management            | 3              | 2                 | 5                | 2    |           |
| GE373          | Marketing<br>Management                | 3              |                   | 3                | 4G305          | Industrial<br>Management            | 3              | 2                 | 5                | 2    |           |
| GE374          | Production<br>Management               | 3              |                   | 3                | 4G305          | Industrial<br>Management            | 3              | 2                 | 5                | 2    |           |
| GE375          | Industrial<br>Management               | 3              |                   | 3                | 4G305          | Industrial<br>Management            | 3              | 2                 | 5                | 2    |           |
| ME376          | Mechanical<br>Measurement              | 2              | 2 2 4 4M          |                  | 4M203          | Measurement &<br>Controls           | 3              | 2                 | 5                | 1    |           |
| ME377          | Computer Aided<br>Drafting             | 1              | 4                 | 5                |                | No equivalent subject               |                |                   |                  |      |           |
| ME378          | 3-D Modeling                           | 1              | 3                 | 4                | 4M407          | 3-D Modeling                        | 1              | 4                 | 5                | 1    |           |
| ME379          | Mechanical<br>Engineering<br>Materials | 3              | 2                 | 5                | 4M411          | Mechanical<br>Engineering Materials | 3              | 2                 | 5                | 0    |           |
| ME380          | Industrial Visits                      | 0              | 4                 | 4                | 4M413          | Implant Training                    | 0              | 4                 | 4                | 0    |           |
| ME451          | Production<br>Processes                | 3              | 4                 | 7                | 4M202          | Manufacturing<br>Processes          | 2              | 4                 | 6                |      | 1         |
| ME452          | Entrepreneurship<br>Development        | 3              | 3                 | 6                | 4G303          | No equivalent subject               |                |                   |                  |      |           |
| ME453          | Heat Power<br>Engineering              | 4              | 2                 | 6                | 4M405          | Heat Power<br>Engineering           | 3              | 2                 | 5                |      | 1         |
| ME454          | Tool Engineering                       | 4              | 2                 | 6                | 4M410          | Tool Engineering                    | 3              | 2                 | 5                |      | 1         |
| ME455          | Design of Machine<br>Elements          | 4              | 2                 | 6                | 4M501          | Design of Machine<br>Elements.      | 4              | 2                 | 6                | 0    |           |
| ME456          | Seminar                                | 0              | 3                 | 3                | 4M404          | Seminar                             | 0              | 2                 | 2                |      | 1         |
| ME457          | Project                                | 0              | 4                 | 4                | 4M403          | Project                             | 0              | 4                 | 4                | 0    |           |
|                |                                        |                |                   |                  |                |                                     |                |                   |                  |      |           |

|                | 3 <sup>rd</sup> revision                      | Curriculun     | 1                 |                  |                | 4 <sup>th</sup> revision 0             | Curriculum     |                   |                  | Diff | in credit |
|----------------|-----------------------------------------------|----------------|-------------------|------------------|----------------|----------------------------------------|----------------|-------------------|------------------|------|-----------|
| Course<br>code | Course name                                   | Theory credits | Practical credits | Total<br>Credits | Course<br>code | Course name                            | Theory credits | Practical credits | Total<br>Credits | Plus | Minus     |
| ME458          | Automobile<br>Engineering                     | 3              | 2                 | 5                | 4M418          | Automobile<br>Engineering              | 4              | 2                 | 6                | 1    |           |
| ME459          | Mechanical<br>Estimation and<br>Costing       | 3              | 2                 | 5                |                | Any other subject                      |                |                   |                  |      |           |
| ME460          | Refrigeration and<br>Airconditioning          | 3              | 2                 | 5                | 4M416          | Refrigeration and<br>Air-conditioning  | 4              | 2                 | 6                | 1    |           |
| ME461          | Industrial<br>Engineering                     | 3              | 2                 | 5                | 4M503          | Production<br>Engineering              | 3              | 2                 | 5                | 0    |           |
| ME462          | Power Plant<br>Engineering                    | 3              | 2                 | 5                | 4M414          | Power plant<br>Engineering             | 4              | 2                 | 6                | 1    |           |
| ME463          | Mechatronics                                  | 3              | 2                 | 5                |                | No equivalent subject                  |                |                   |                  |      |           |
| ME551          | CNC Machines                                  | 2              | 4                 | 6                | 4M408          | Computer Integrated<br>Machining       | 2              | 3                 | 5                |      | 1         |
| ME552          | Advanced<br>Manufacturing<br>Processes        | 3              | 4                 | 7                | 4M409          | Advanced<br>Manufacturing<br>Processes | 3              | 4                 | 7                | 0    |           |
| ME553          | Metrology and<br>Quality Control              | 4              | 3                 | 7                | 4M502          | Metrology and<br>Quality Control       | 3              | 4                 | 7                | 0    |           |
| ME555          | Advance<br>Manufacturing<br>Systems           | 3              | 0                 | 3                | 4M505          | Advance<br>Manufacturing<br>Systems    | 4              | 2                 | 6                | 3    |           |
| ME556          | Industrial Pollution<br>and Control           | 3              | 0                 | 3                | 4G304          | No equivalent subject                  |                |                   |                  |      |           |
| ME557          | Alternate Energy<br>Sources                   | 3              | 0                 | 3                | 4M506          | Alternate Energy<br>Sources            | 4              | 2                 | 6                | 3    |           |
| ME558          | Computational<br>Techniques                   | 3              | 0                 | 3                |                | No equivalent subject                  |                |                   |                  |      |           |
| ME559          | Industrial<br>Psychology                      | 3              | 0                 | 3                |                | No equivalent subject                  |                |                   |                  |      |           |
| ME560          | Industrial Laws                               | 3              | 0                 | 3                |                | No equivalent subject                  |                |                   |                  |      |           |
| Ν              | NEW COURSES ADDED IN 4 <sup>TH</sup> REVISION |                |                   |                  |                | Development of life<br>skills          | 2              | 2                 | 4                |      |           |

| 4M207 | Professional Practices           | 0 | 3 | 3 |  |
|-------|----------------------------------|---|---|---|--|
| 4G302 | Communication Skill              | 2 | 2 | 4 |  |
| 4G303 | Entrepreneurship<br>Development  | 2 | 2 | 4 |  |
| 4M417 | Advance<br>Mathematics           | 4 | 2 | 6 |  |
| 4M507 | Marketing<br>Management          | 4 | 2 | 6 |  |
| 4M508 | C-Programming                    | 4 | 2 | 6 |  |
| 4M509 | Production Planning<br>& Control | 4 | 2 | 6 |  |

# **EQUIVALANCE SUBJECT FOR 3<sup>rd</sup>, 4<sup>th</sup>, 5<sup>th</sup> AND 6<sup>th</sup> REVISION** (Abbreviations for allotted credits: Theory: T1, Practical: P, Tutorial: T2, Total: TT)

| 31             | <sup>rd</sup> revision           |                | 4 <sup>th</sup> revision        |    |   |    |                | 5 <sup>th</sup> revision        |    |    |    |                | 6 <sup>th</sup> revision        |    |   |        |    | c    | iff in<br>redit |
|----------------|----------------------------------|----------------|---------------------------------|----|---|----|----------------|---------------------------------|----|----|----|----------------|---------------------------------|----|---|--------|----|------|-----------------|
| Course<br>code | Course name                      | Course<br>code | Course name                     | T1 | Р | ΤT | Course<br>code | Course name                     | T1 | Pr | ΤT | Course<br>code | Course name                     | T1 | Р | Т<br>2 | ΤT | plus | Minus           |
| GE151          | Communication skill              | 4G301          | English                         | 3  | 2 | 5  | 5G301          | English                         | 2  | 2  | 4  | 6G301          | English                         | 2  | 2 | -      | 4  | -    | -               |
| GE152          | Basic<br>Mathematics             | 4G101          | Basic<br>Mathematics            | 4  | 0 | 4  | 5G101          | Basic<br>Mathematics            | 4  | 0  | 4  | 6G101          | Basic<br>Mathematics            | 3  | 0 | 1      | 4  | -    | -               |
| GE153          | Engineering<br>Mathematics       | 4G102          | Engineering<br>Mathematics      | 4  | 0 | 4  | 5G102          | Engineering<br>Mathematics      | 4  | 0  | 4  | 6G102          | Engineering<br>Mathematics      | 3  | 0 | 1      | 4  | -    | -               |
| GE154          | Basics Science                   | 4G104          | Engineering<br>Chemistry        | 4  | 2 | 6  | 5G104          | Engineering<br>Chemistry        | 3  | 2  | 5  | 6G104          | Engineering<br>Chemistry        | 3  | 2 | -      | 5  | -    | -               |
| GE155          | Applied<br>Science               | 4G103          | Engineering<br>Physics          | 4  | 2 | 6  | 5G103          | Engineering<br>Physics          | 3  | 2  | 5  | 6G103          | Engineering<br>Physics          | 3  | 2 | -      | 5  | -    | —               |
| GE156          | Workshop<br>Practice             | 4G105          | Work Shop<br>Practice           | 0  | 3 | 3  | 5G105          | Work Shop<br>Practice           | 0  | 3  | 3  | 6G202          | Work Shop<br>Practice           | 0  | 3 | -      | 3  | -    | -               |
| GE157          | Engineering<br>Graphics          | 4G106          | Engineering<br>Graphics         | 2  | 2 | 4  | 5G106          | Engineering<br>Graphics         | 2  | 2  | 4  | 6G201          | Engineering<br>Graphics         | 2  | 2 | -      | 4  | -    | _               |
| GE158          | Basics of<br>computer<br>systems | 4G107          | Basics of<br>Computer<br>System | 1  | 2 | 3  | 5G107          | Basics of<br>Computer<br>System | 1  | 2  | 3  | 6G203          | Basics of<br>Computer<br>System | 0  | 2 | -      | 2  | _    | 1               |
| ME251          | Workshop<br>Technology           | 4M208          | Mechanical<br>Technology        | 2  | 3 | 5  | 5R208          | Mechanical<br>Technology        | 2  | 3  | 5  | 6M204          | Mechanical<br>Technology        | 3  | 3 | -      | 6  | 1    | -               |
| ME252          | Electrical<br>Engineering        | 4M301          | Basics of electrical            | 4  | 2 | 6  | 5R301          | Basics of electrical            | 4  | 2  | 6  | 6R203          | Basics of electrical Engg.      | 4  | 2 | -      | 6  | Ι    | —               |
| ME253          | Basic<br>Electronics             |                | Engineering and Electronics     |    |   |    |                | Engg.<br>and<br>Electronics     |    |    |    |                | and Electronics                 |    |   |        |    |      |                 |
| ME254          | Engineering<br>Drawing           | 4M201          | Engineering<br>Drawing          | 2  | 4 | 6  | 5R201          | Engineering<br>Drawing          | 2  | 4  | 6  | 6R201          | Engineering<br>Drawing          | 2  | 4 | -      | 6  | _    | -               |

| 3              | rd revision                            |                | 4 <sup>th</sup> revision               |    |   |    |       | 5 <sup>th</sup> revision               |    |   |    |                | 6 <sup>th</sup> revision                                |    |        |        |        |      | iff in<br>redit |
|----------------|----------------------------------------|----------------|----------------------------------------|----|---|----|-------|----------------------------------------|----|---|----|----------------|---------------------------------------------------------|----|--------|--------|--------|------|-----------------|
| Course<br>code |                                        | Course<br>code | Course name                            | T1 | Р | TT | code  | Course name                            | T1 |   | TT | Course<br>code | Course name                                             | T1 |        | Т<br>2 |        | plus | Minus           |
| ME255          | Engineering<br>Mechanics               | 4M204          | Applied<br>Mechanics                   | 4  | 2 | 6  | 5Q201 | Applied<br>Mechanics                   | 4  | 2 | 6  | 6Q201          | Engineering<br>Mechanics                                | 4  | 2      | -      | 6      | -    | —               |
| ME256          | Theory of<br>Machines                  | 4M406          | Theory of<br>Machines                  | 3  | 2 | 5  | 5R406 | Theory<br>of Machines                  | 3  | 2 | 5  | 6M206          | Theory<br>of Machines                                   | 3  | 2      | -      | 5      | -    | -               |
| ME257          | Thermal<br>Engineering                 | 4M205          | Thermal<br>Engineering                 | 3  | 2 | 5  | 5M205 | Thermal<br>Engineering                 | 3  | 2 | 5  | 6M205          | Thermal<br>Engineering                                  | 3  | 2      | -      | 5      | -    | Ι               |
| ME258          | Manufacturing<br>Processes             | 4M202          | Manufacturing<br>Processes             | 2  | 4 | 6  | 5M202 | Manufacturing<br>Processes             | 2  | 4 | 6  | 6M202          | Machining<br>Processes                                  | 2  | 4      | -      | 6      | _    | _               |
| ME259          | Strength Of<br>Materials               | 4M412          | Strength Of<br>Materials               | 4  | 2 | 6  | 5Q202 | Strength Of<br>Materials               | 3  | 2 | 5  | 6R202          | Strength Of<br>Materials                                | 3  | 2      | -      | 5      | -    | -               |
| ME260          | Fluid Power                            | 4M401          | Fluid Power                            | 3  | 2 | 5  | 5R401 | Fluid Power                            | 3  | 2 | 5  | 6M401<br>6M402 | Fluid mech. &<br>machinery<br>Industrial Fluid<br>power | 3  | 2<br>2 | -      | 5<br>5 |      |                 |
| ME261          | Machine<br>Drawing                     | 4 M402         | Machine<br>Drawing                     | 2  | 4 | 6  | 5R402 | Machine<br>Drawing                     | 2  | 4 | 6  | 6M403          | Machine<br>Drawing                                      | 2  | 4      | -      | 6      | _    | -               |
| GE371          | Material<br>Management                 | 4M415          | Material<br>Management                 | 4  | 2 | 6  | 5M415 | Material<br>Management                 | 4  | 2 | 6  | 6G305          | Industrial org &<br>Management                          | 3  | 2      |        | 5      | 1    | _               |
| GE372          | Financial<br>Management                | 4G305          | Industrial<br>Management               | 3  | 2 | 5  | 5G305 | Industrial<br>Management               | 3  | 2 | 5  | 6G305          | Industrial org &<br>Management                          | 3  | 2      | -      | 5      | -    | _               |
| GE373          | Marketing<br>Management                | 4G305          | Industrial<br>Management               | 3  | 2 | 5  | 5G305 | Industrial<br>Management               | 3  | 2 | 5  | 6G305          | Industrial org &<br>Management                          | 3  | 2      | -      | 5      | -    | -               |
| GE374          | Production<br>Management               | 4G305          | Industrial<br>Management               | 3  | 2 | 5  | 5G305 | Industrial<br>Management               | 3  | 2 | 5  | 6G305          | Industrial org &<br>Management                          | 3  | 2      | -      | 5      | -    | -               |
| ME376          | Mechanical<br>Measurement              | 4M203          | Measurement & Controls                 | 3  | 2 | 5  | 5M203 | Measurement<br>& Controls              | 3  | 2 | 5  | 6M207          | Measurement<br>& Controls                               | 3  | 2      | 1      | 6      | 1    | _               |
| ME378          | 3-D Modeling                           | 4M407          | 3-D Modeling                           | 1  | 4 | 5  | 5R407 | 3-D Modeling                           | 1  | 2 | 3  | 6M405          | 3-D Modeling                                            | 1  | 2      | -      | 3      | _    | _               |
| ME379          | Mechanical<br>Engineering<br>Materials | 4M411          | Mechanical<br>Engineering<br>Materials | 3  | 2 | 5  | 5R411 | Mechanical<br>Engineering<br>Materials | 3  | 2 | 5  | 6M410          | Mechanical<br>Engineering<br>Materials                  | 3  | 2      | -      | 5      | -    | -               |
| ME380          | Industrial Visits                      | 4M413          | Implant Training                       | 0  | 4 | 4  | 5R412 | Industrial visit                       | 0  | 2 | 2  | 6M503          | Vocational<br>Training                                  | 0  | 4      | 0      | 4      | 2    | _               |
| ME451          | Production<br>Processes                | 4M202          | Manufacturing<br>Processes             | 2  | 4 | 6  | 5M202 | Manufacturing<br>Processes             | 2  | 4 | 6  | 6M202          | Machining<br>Processes                                  | 2  | 4      | -      | 6      | _    | _               |
| ME453          | Heat Power                             | 4M405          | Heat Power                             | 3  | 2 | 5  | 5M405 | Heat Power                             | 3  | 2 | 5  | 6M404          | Heat Power                                              | 3  | 2      | -      | 5      | _    | _               |

|                | Engineering                             |                | Engineering                              |    |   |    |                | Engineering                                  |    |    |    |                | Engineering                              |    | $\Box$ |        |    |      |                 |
|----------------|-----------------------------------------|----------------|------------------------------------------|----|---|----|----------------|----------------------------------------------|----|----|----|----------------|------------------------------------------|----|--------|--------|----|------|-----------------|
| 3              | rd revision                             |                | 4 <sup>th</sup> revision                 |    |   |    |                | 5 <sup>th</sup> revision                     |    |    |    |                | 6 <sup>th</sup> revision                 |    |        |        |    |      | iff in<br>redit |
| Course<br>code | Course name                             | Course<br>code | Course name                              | T1 | Р | ΤT | Course<br>code | Course name                                  | T1 | Pr | TT | Course<br>code | Course name                              | T1 | Р      | Т<br>2 | TT | plus | Minus           |
| ME454          | Tool<br>Engineering                     | 4M410          | Tool<br>Engineering                      | 3  | 2 | 5  | 5M410          | Tool<br>Engineering                          | 3  | 2  | 5  | 6M409          | Tool<br>Engineering                      | 3  | 2      | -      | 5  | -    | Ι               |
| ME455          | Design of<br>Machine<br>Elements        | 4M501          | Design of<br>Machine<br>Elements.        | 4  | 2 | 6  | 5M501          | Design of<br>Machine<br>Elements.            | 4  | 2  | 6  | 6M504          | Design of<br>Machine<br>Elements.        | 4  | 2      | -      | 6  | _    | _               |
| ME456          | Seminar                                 | 4M404          | Seminar                                  | 0  | 2 | 2  | 5R404          | Seminar                                      | 0  | 2  | 2  | 6M501          | Seminar                                  | 0  | 2      | -      | 2  | _    | _               |
| ME457          | Project                                 | 4M403          | Project                                  | 0  | 4 | 4  | 5R403          | Project                                      | 0  | 4  | 4  | 6M502          | Project                                  | 0  | 4      | -      | 4  | _    | _               |
| ME458          | Automobile<br>Engineering               | 4M418          | Automobile<br>Engineering                | 4  | 2 | 6  | 5M417          | Automobile<br>Engineering                    | 4  | 2  | 6  | 6M413          | Automobile<br>Engineering                | 4  | 2      | -      | 6  | -    | _               |
| ME460          | Refrigeration<br>and<br>Airconditioning | 4M416          | Refrigeration<br>And<br>Air-conditioning | 4  | 2 | 6  | 5M416          | Refrigeration<br>and<br>Air-<br>conditioning | 4  | 2  | 6  | 6M412          | Refrigeration<br>and<br>Air-conditioning | 4  | 2      | -      | 6  | -    | Ι               |
| ME461          | Engineering                             | 4M503          | Production<br>Engineering                | 3  | 2 | 5  | 5M503          | Production<br>Engineering                    | 3  | 2  | 5  | 6M506          | Production<br>Engineering                | 3  | 2      | -      | 5  | _    | -               |
| ME462          | Engineering                             | 4M414          | Power plant<br>Engineering               | 4  | 2 | 6  | 5M414          | Power plant<br>Engineering                   | 4  | 2  | 6  | 6M411          | Power plant<br>Engineering               | 4  | 2      | -      | 6  | _    | _               |
| ME555          | CNC Machines                            | 4M408          | Computer<br>Integrated<br>Machining      | 2  | 3 | 5  | 5M408          | Computer<br>Integrated<br>Machining          | 1  | 2  | 3  | 6M406          | Computer<br>Integrated<br>Machining      | 2  | 2      | -      | 4  | 1    | _               |
| ME552          | Advanced<br>Manufacturing<br>Processes  | 4M409          | Advanced<br>Manufacturing<br>Processes   | 3  | 4 | 7  | 5M409          | Advanced<br>Manufacturing<br>Processes       | 3  | 4  | 7  | 6M408          | Advanced<br>Manufacturing<br>Processes   | 3  | 4      | -      | 7  | _    | _               |
| ME553          | Metrology and<br>Quality Control        | 4M502          | Metrology<br>and Quality<br>Control      | 3  | 4 | 7  | 5R502          | Metrology<br>and<br>Quality<br>Control       | 3  | 2  | 5  | 6M505          | Metrology<br>and<br>Quality Control      | 3  | 2      | -      | 5  | _    | -               |
| ME554          | IC Engines                              | 4M504          | IC Engines                               | 4  | 2 | 6  | 5R504          | IC Engines                                   | 4  | 2  | 6  | 6M407          | IC Engines                               | 4  | 2      | -      | 6  | _    | _               |
| ME555          | Advance<br>Manufacturing<br>Systems     | 4M505          | Advance<br>Manufacturing<br>Systems      | 4  | 2 | 6  | 5M505          | Advance<br>Manufacturing<br>Systems          |    | 2  | 6  | 6M507          | Advance<br>Manufacturing<br>Systems      | 4  | 2      | -      | 6  | _    | _               |
| ME557          | Alternate Energy                        | 4M506          | Alternate                                | 4  | 2 | 6  | 5M506          | Alternate                                    | 4  | 2  | 6  | 6M508          | Alternate                                | 4  | 2      | -      | 6  | _    | _               |

|                | Sources                                        |                          | Energy<br>Sources                   |    |   |    |                          | Energy<br>Sources                   |    |    |       |                           | Energy<br>Sources                   |    |   |        |                |      |       |
|----------------|------------------------------------------------|--------------------------|-------------------------------------|----|---|----|--------------------------|-------------------------------------|----|----|-------|---------------------------|-------------------------------------|----|---|--------|----------------|------|-------|
|                |                                                | 4 <sup>th</sup> revision |                                     |    |   |    | 5 <sup>th</sup> revision |                                     |    |    |       | 6 <sup>th</sup> revision  |                                     |    |   |        | Diff in credit |      |       |
| Course<br>code | Course name                                    | Course<br>code           | Course name                         | T1 | Р | TT | Course<br>code           | Course name                         | T1 | Pr | TT    | Course<br>code            | Course name                         | T1 |   | T<br>2 | TT             | plus | Minus |
|                |                                                | 4M206                    | Development<br>of life skills       | 2  | 2 | 4  | 5R206                    | Development<br>of life skills       | 0  | 2  | 2     | 6G303                     | Development<br>of life skills       | 0  | 2 |        | 2              | _    | -     |
|                |                                                | 4M207                    | Professional<br>Practices           | 0  | 3 | 3  | 5R207                    | Professional<br>Practices           | 0  | 2  | 2     | 6M208                     | Computer aided drafting             | 1  | 2 | -      | 3              | 1    | 0     |
|                |                                                | 4G302                    | Communication<br>Skill              | 2  | 2 | 4  | 5G302                    | Communicatio<br>n<br>Skill          | 1  | 2  | 3     | 6G302                     | Communication<br>Skills             | 1  | 2 | -      | 3              | -    | _     |
|                |                                                | 4G303                    | Entreprenurship<br>Develpoment      | 2  | 2 | 4  | 5G303                    | Entreprenurshi<br>p<br>Develpoment  | 2  | 2  | 4     | 6G306                     | Entreprenurship<br>Develpoment      | 2  | 2 | -      | 4              | -    | _     |
|                |                                                | 4M417                    | Advance<br>Mathematics              | 4  | 2 | 6  | 5M417                    | Advance<br>Mathematics              | 4  | 2  | 6     |                           | No Equivalent courses               |    |   |        |                |      |       |
|                |                                                | 4M507                    | Marketing<br>Management             | 4  | 2 | 6  | 5M507                    | Marketing<br>Management             | 4  | 2  | 6     |                           |                                     |    |   |        |                |      |       |
|                |                                                | 4M508                    | C-Programming                       | 2  | 2 | 4  | 5M508                    | C-<br>Programming                   | 4  | 2  | 6     |                           |                                     |    |   |        |                |      |       |
|                |                                                | 4M509                    | Production<br>Planning<br>& Control | 0  | 3 | 3  | 5M509                    | Production<br>Planning<br>& Control | 4  | 2  | 6     | 6M509                     | Production<br>Planning<br>& Control | 4  | 2 | -      | 6              | _    | _     |
|                |                                                | 4G304                    | Enviromental<br>Science             | 2  | 0 | 2  | 5G304                    | Enviromental<br>Science             | 2  | 0  | 2     | 6G304                     | Enviromental<br>Science             | 0  | 2 | -      | 2              | _    | _     |
|                | New Courses added in 6 <sup>th</sup> revision. |                          |                                     |    |   |    |                          |                                     |    |    | 6M503 | Vocational<br>Training    | 0                                   | 4  | - | 4      |                |      |       |
|                |                                                |                          |                                     |    |   |    |                          |                                     |    |    |       | Computer aided drafting   | 1                                   | 2  |   | 3      |                |      |       |
|                |                                                |                          |                                     |    |   |    |                          |                                     |    |    | 6M402 | Industrial Fluid<br>Power | 3                                   | 2  | - | 5      |                |      |       |